Skip to main content
Log in

Oriented event shapes at N3LL + \( \mathcal{O}\left( {\alpha_{\mathrm{S}}^2} \right) \)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze oriented event-shapes in the context of Soft-Collinear Effective Theory (SCET) and in fixed-order perturbation theory. Oriented event-shapes are distributions of event-shape variables which are differential on the angle θ T that the thrust axis forms with the electron-positron beam. We show that at any order in perturbation theory and for any event shape, only two angular structures can appear: F 0 = 3/8 (1 + cos2 θ T ) and F 1 = (1 − 3 cos2 θ T ). When integrating over θ T to recover the more familiar event-shape distributions, only F 0 survives. The validity of our proof goes beyond perturbation theory, and hence only these two structures are present at the hadron level. The proof also carries over massive particles. Using SCET techniques we show that singular terms can only arise in the F 0 term. Since only the hard function is sensitive to the orientation of the thrust axis, this statement applies also for recoil-sensitive variables such as Jet Broadening. We show how to carry out resummation of the singular terms at N3LL for Thrust, Heavy-Jet Mass, the sum of the Hemisphere Masses and C-parameter by using existing computations in SCET. We also compute the fixed-order distributions for these event-shapes at \( \mathcal{O}\left( {{\alpha_{\mathrm{S}}}} \right) \) analytically and at \( \mathcal{O}\left( {\alpha_{\mathrm{S}}^2} \right) \) with the program Event2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for α s (m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  2. T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J. C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision Thrust Cumulant Moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].

    ADS  Google Scholar 

  5. S. Bethke, World Summary of alphas (2011), Nucl. Phys. (Proc. Supp.), to appear (2012).

  6. S. Bethke et al., Workshop on Precision Measurements of α s , arXiv:1110.0016 [INSPIRE].

  7. A.H. Hoang, V. Mateu, M. Schwartz and I.W. Stewart, Heavy Jet Mass Predictions at N 3 LL with Power Corrections, work in progress (2013).

  8. D.W. Kolodrubetz, A.H. Hoang, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL and a determination of α s , work in progress (2013).

  9. DELPHI collaboration, P. Abreu et al., Consistent measurements of α s from precise oriented event shape distributions, Eur. Phys. J. C 14 (2000) 557 [hep-ex/0002026] [INSPIRE].

    ADS  Google Scholar 

  10. S. Catani and M. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  12. G. Rodrigo, A. Santamaria and M.S. Bilenky, Do the quark masses run? Extracting m b (m Z ) from LEP data, Phys. Rev. Lett. 79 (1997) 193 [hep-ph/9703358] [INSPIRE].

    Article  ADS  Google Scholar 

  13. OPAL collaboration, G. Abbiendi et al., Measurement of the longitudinal cross-section using the direction of the thrust axis in hadronic events at LEP, Phys. Lett. B 440 (1998) 393 [hep-ex/9808035] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  18. B. Lampe, On the longitudinal cross-section for Zhadrons, Phys. Lett. B 301 (1993) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Hagiwara and G. Kirilin, Angular distribution of thrust axis with power-suppressed contribution in e + e annihilation, JHEP 10 (2010) 093 [arXiv:1006.5330] [INSPIRE].

    Article  ADS  Google Scholar 

  20. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  21. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  22. V. Mateu, I.W. Stewart and J. Thaler, Power Corrections to Event Shapes with Mass-Dependent Operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].

    ADS  Google Scholar 

  23. G. Parisi, Super inclusive cross-sections, Phys. Lett. B 74 (1978) 65 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. J.F. Donoghue, F. Low and S.-Y. Pi, Tensor Analysis of Hadronic Jets in Quantum Chromodynamics, Phys. Rev. D 20 (1979) 2759 [INSPIRE].

    ADS  Google Scholar 

  25. L. Clavelli, Jet Invariant Mass in Quantum Chromodynamics, Phys. Lett. B 85 (1979) 111 [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Chandramohan and L. Clavelli, Consequences of Second Order QCD for Jet Structure in e + e Annihilation, Nucl. Phys. B 184 (1981) 365 [INSPIRE].

    Article  ADS  Google Scholar 

  27. L. Clavelli and D. Wyler, Kinematical Bounds on Jet Variables and the Heavy Jet Mass Distribution, Phys. Lett. B 103 (1981) 383 [INSPIRE].

    Article  ADS  Google Scholar 

  28. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  29. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  30. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  32. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  33. T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P.E. Rakow and B. Webber, Transverse Momentum Moments of Hadron Distributions in QCD Jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Becher, G. Bell and M. Neubert, Factorization and Resummation for Jet Broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. C.F. Berger, T. Kúcs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

    ADS  Google Scholar 

  39. A. Hornig, C. Lee and G. Ovanesyan, Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Catani and B. Webber, Resummed C parameter distribution in e + e annihilation, Phys. Lett. B 427 (1998) 377 [hep-ph/9801350] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Catani, G. Turnock and B. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  43. Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Banfi, G.P. Salam and G. Zanderighi, Generalized resummation of QCD final state observables, Phys. Lett. B 584 (2004) 298 [hep-ph/0304148] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. de Florian and M. Grazzini, The back-to-back region in e + e energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C.W. Bauer, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in jet distributions, Phys. Rev. Lett. 91 (2003) 122001 [hep-ph/0212255] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].

    ADS  Google Scholar 

  49. G. Korchemsky, Shape functions and power corrections to the event shapes, hep-ph/9806537 [INSPIRE].

  50. G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Korchemsky and S. Tafat, On power corrections to the event shape distributions in QCD, JHEP 10 (2000) 010 [hep-ph/0007005] [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

    ADS  Google Scholar 

  53. M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [INSPIRE].

    ADS  Google Scholar 

  54. A.H. Hoang and I.W. Stewart, Designing gapped soft functions for jet production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S.M. Freedman, Subleading Corrections To Thrust Using Effective Field Theory, arXiv:1303.1558 [INSPIRE].

  56. C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].

    ADS  Google Scholar 

  57. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].

    ADS  Google Scholar 

  58. R.K. Ellis, D. Ross and A. Terrano, Calculation of Event Shape Parameters in e + e Annihilation, Phys. Rev. Lett. 45 (1980) 1226 [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Catani and B. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A.H. Hoang and S. Kluth, Hemisphere Soft Function at \( O\left( {\alpha_s^2} \right) \) for Dijet Production in e + e Annihilation, arXiv:0806.3852 [INSPIRE].

  61. A.G. Holzner et al., Data Preservation at LEP, arXiv:0912.1803 [INSPIRE].

  62. DPHEP Study Group collaboration, Z. Akopov et al., Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics, arXiv:1205.4667 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicent Mateu.

Additional information

ArXiv ePrint: 1307.3513

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateu, V., Rodrigo, G. Oriented event shapes at N3LL + \( \mathcal{O}\left( {\alpha_{\mathrm{S}}^2} \right) \) . J. High Energ. Phys. 2013, 30 (2013). https://doi.org/10.1007/JHEP11(2013)030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)030

Keywords

Navigation