Skip to main content
Log in

Probing EWSB naturalness in unified SUSY models with dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We have studied Electroweak Symmetry Breaking (EWSB) fine-tuning in the context of two unified Supersymmetry scenarios: the Constrained Minimal Supersymmetric Model (CMSSM) and models with Non-Universal Higgs Masses (NUHM), in light of current and upcoming direct detection dark matter experiments. We consider both those models that satisfy a one-sided bound on the relic density of neutralinos, \( {\Omega_{{\tilde{\chi }}}}0 < 0.{12} \), and also the subset that satisfy the two-sided bound in which the relic density is within the 2 sigma best fit of WMAP7 + BAO + H0 data. We find that current direct searches for dark matter probe the least fine-tuned regions of parameter-space, or equivalently those of lowest μ, and will tend to probe progressively more and more fine-tuned models, though the trend is more pronounced in the CMSSM than in the NUHM. Additionally, we examine several subsets of model points, categorized by common mass hierarchies; \( {M_{{\tilde{\chi }_1^0}}} \sim {M_{{\tilde{\chi }_1^{\pm }}}},{M_{{\tilde{\chi }_1^0}}} \sim {M_{{{{\tilde{\tau }}_1}}}},{M_{{\tilde{\chi }_1^0}}} \sim {M_{{{{\text{t}}_1}}}} \), the light and heavy Higgs poles, and any additional models classified as “other”; the relevance of these mass hierarchies is their connection to the preferred neutralino annihilation channel that determines the relic abundance. For each of these subsets of models we investigated the degree of fine-tuning and discoverability in current and next generation direct detection experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

    ADS  Google Scholar 

  2. U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].

    ADS  Google Scholar 

  3. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin 2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  4. C. Giunti, C. Kim and U. Lee, Running coupling constants and grand unification models, Mod. Phys. Lett. A 6 (1991) 1745 [INSPIRE].

    ADS  Google Scholar 

  5. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    Article  ADS  Google Scholar 

  6. H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Nath, R.L. Arnowitt and A.H. Chamseddine, Gravity induced symmetry breaking and ground state of local supersymmetric guts, Phys. Lett. B 121 (1983) 33 [INSPIRE].

    Article  ADS  Google Scholar 

  9. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    Article  ADS  Google Scholar 

  10. R.L. Arnowitt and P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725 [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.G. Ross and R. Roberts, Minimal supersymmetric unification predictions, Nucl. Phys. B 377 (1992)571 [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].

    Article  ADS  Google Scholar 

  13. V.D. Barger, M. Berger and P. Ohmann, Supersymmetric grand unified theories: two loop evolution of gauge and Yukawa couplings, Phys. Rev. D 47 (1993) 1093 [hep-ph/9209232] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H. Baer and M. Brhlik, Cosmological relic density from minimal supergravity with implications for collider physics, Phys. Rev. D 53 (1996) 597 [hep-ph/9508321] [INSPIRE].

    Article  ADS  Google Scholar 

  16. E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.R. Ellis, A. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric standard model, Phys. Lett. B 134 (1984) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Matalliotakis and H.P. Nilles, Implications of nonuniversality of soft terms in supersymmetric grand unified theories, Nucl. Phys. B 435 (1995) 115 [hep-ph/9407251] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan β solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V. Berezinsky et al., Neutralino dark matter in supersymmetric models with nonuniversal scalar mass terms, Astropart. Phys. 5 (1996) 1 [hep-ph/9508249] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the non-universal Higgs model, Phys. Rev. D 83 (2011) 015014 [arXiv:0903.1279] [INSPIRE].

    Article  ADS  Google Scholar 

  23. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    Article  ADS  Google Scholar 

  24. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.R. Ellis, K.A. Olive and P. Sandick, Varying the universality of supersymmetry-breaking contributions to MSSM Higgs boson masses, Phys. Rev. D 78 (2008) 075012 [arXiv:0805.2343] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Ellis, K.A. Olive and P. Sandick, Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses, New J. Phys. 11 (2009) 105015 [arXiv:0905.0107] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P. Sandick, Neutralino dark matter in MSSM models with non-universal Higgs masses, AIP Conf. Proc. 1241 (2010) 450 [arXiv:0911.4451] [INSPIRE].

    Article  ADS  Google Scholar 

  28. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Perelstein and C. Spethmann, A collider signature of the supersymmetric golden region, JHEP 04 (2007) 070 [hep-ph/0702038] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007)367 [hep-ph/0607059] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  36. CDMS-II collaboration, Z. Ahmed et al., Results from a low-energy analysis of the CDMS II germanium data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].

    Article  ADS  Google Scholar 

  37. CDMS and EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Hall et al., A search for weakly interacting dark matter with the LUX experiment, PoS(ICHEP 2010)431 [INSPIRE].

  39. CoGeNT collaboration, C. Aalseth et al., Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].

    Article  ADS  Google Scholar 

  40. E. Behnke et al., Improved limits on spin-dependent WIMP-proton interactions from a two liter CF 3 I bubble chamber, Phys. Rev. Lett. 106 (2011) 021303 [arXiv:1008.3518] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  42. COUPP collaboration, E. Behnke et al., Improved spin-dependent WIMP limits from a bubble chamber, Science 319 (2008) 933 [arXiv:0804.2886] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G. Angloher et al., Limits on WIMP dark matter using sapphire cryogenic detectors, Astropart. Phys. 18 (2002) 43 [INSPIRE].

    Article  ADS  Google Scholar 

  44. L. Stodolsky and F. Probst, CREEST, talk given at The dark side of the universe, May 10–28, Ann Arbor, U.S.A. (2004).

  45. TEXONO collaboration, S. Lin et al., New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D 79 (2009) 061101 [arXiv:0712.1645] [INSPIRE].

    ADS  Google Scholar 

  46. E. Aprile, L. Baudis and f.t.X. Collaboration, Status and sensitivity projections for the XENON100 dark matter experiment, PoS(IDM2008)018 [arXiv:0902.4253] [INSPIRE].

  47. J.R. Ellis and K.A. Olive, How finely tuned is supersymmetric dark matter?, Phys. Lett. B 514 (2001)114 [hep-ph/0105004] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. King and J. Roberts, Natural implementation of neutralino dark matter, JHEP 09 (2006) 036 [hep-ph/0603095] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R. Kitano and Y. Nomura, Supersymmetry with small μ: connections between naturalness, dark matter and (possibly) flavor, hep-ph/0606134 [INSPIRE].

  50. S. Cassel, D. Ghilencea, S. Kraml, A. Lessa and G. Ross, Fine-tuning implications for complementary dark matter and LHC SUSY searches, JHEP 05 (2011) 120 [arXiv:1101.4664] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Cassel, Naturalness of electroweak physics within minimal supergravity, arXiv:1107.4770 [INSPIRE].

  52. M. Farina et al., Implications of XEN ON 100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. M. Perelstein and B. Shakya, Fine-tuning implications of direct dark matter searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].

    Article  ADS  Google Scholar 

  54. D. Feldman, Z. Liu and P. Nath, Light higgses at the Tevatron and at the LHC and observable dark matter in SUGRA and D-branes, Phys. Lett. B 662 (2008) 190 [arXiv:0711.4591] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D. Feldman, Superparticle signatures: from PAMELA to the LHC, Nucl. Phys. Proc. Suppl. 200–202 (2010) 82 [arXiv:0908.3727] [INSPIRE].

    Article  Google Scholar 

  56. D. Feldman, Z. Liu and P. Nath, Connecting the direct detection of dark matter with observation of sparticles at the LHC, Phys. Rev. D 81 (2010) 095009 [arXiv:0912.4217] [INSPIRE].

    Article  ADS  Google Scholar 

  57. Tevatron Electroweak Working Group, CDF and D0 collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [INSPIRE].

  58. LEP 2 SUSY working group,, Combined LEP chargino results, up to 208 GeV, for large m0, http://lepsusy.web.cern.ch/lepsusy/www/inos moriond01/charginos pub.html.

  59. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  60. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaboration, Search for neutral Higgs bosons at LEP, sumbitted to ICHEP04 [LHWG-NOTE-2004-01] [ALEPH-2004-008] [DELPHI-2004-042] [L3-NOTE-2820], http://lephiggs.web.cern.ch/LEPHIGGS/papers/August2004 MSSM/index.html.

  61. OPAL collaboration, G. Abbiendi et al., Search for chargino and neutralino production at√s=192GeVto209GeVatLEP,Eur.Phys.J. C 35(2004)1 [hep-ex/0401026][INSPIRE].

    ADS  Google Scholar 

  62. D. Feldman, Z. Liu and P. Nath, Gluino NLSP, dark matter via gluino coannihilation and LHC signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].

    Article  ADS  Google Scholar 

  63. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].

  64. BaBar collaboration, B. Aubert et al., Determination of the branching fraction for inclusive decays B → X s γ, hep-ex/0207076 [INSPIRE].

  65. Belle collaboration, P. Koppenburg et al., An inclusive measurement of the photon energy spectrum in b → sγ decays, Phys. Rev. Lett. 93 (2004) 061803 [hep-ex/0403004] [INSPIRE].

    Article  ADS  Google Scholar 

  66. CLEO collaboration, S. Chen et al., Branching fraction and photon energy spectrum for b→sγ,Phys. Rev. Lett. 87(2001)251807 [hep-ex/0108032][INSPIRE].

    Article  ADS  Google Scholar 

  67. M. Misiak et al., Estimate of B( B → X(s)γ) at O(α s ), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  68. CDF collaboration, F. Abe et al., Search for the decays B d → μ + μ and B s → μ + μ in pp collisions at s = 1.8 TeV, Phys. Rev. D 57 (1998) 3811 [INSPIRE].

    ADS  Google Scholar 

  69. CDF collaboration, D. Acousta et al., Search for B s → μ + μ and B d → μ + μ decays in pp collisions at s = 1.96 TeV, Phys. Rev. Lett. 93 (2004) 032001 [hep-ex/0403032] [INSPIRE].

    Article  ADS  Google Scholar 

  70. D0 collaboration, V. Abazov et al., A search for the flavor-changing neutral current decay B s → μ + μ in pp collisions at s = 1.96 TeV with the DO detector, Phys. Rev. Lett. 94 (2005)071802 [hep-ex/0410039] [INSPIRE].

    Article  ADS  Google Scholar 

  71. D0 collaboration, Update for the upper limit on the rare decay B s→ μ + μ with the D0 detector, D0 note 4733-CONF, www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B21/B21.pdf.

  72. CDF and D0 collaboration, M. Hendron, Searches for FCNC decays Bs(d) → μ+μ, in the proceedings of the 32nd International Conference on High-Energy Physics (ICHEP 04), August 16–22, Beijing, China (2004) [FERMILAB-CONF-04-391-E].

  73. CDF collaboration, Search for the rare decays B s(d) → μ + μ , CDF note 7670, www-cdf.fnal.gov/physics/new/bottom/050407.blessed-bsmumu.

  74. A. Djouadi, M. Drees and J.-L. Kneur, Updated constraints on the minimal supergravity model, JHEP 03 (2006) 033 [hep-ph/0602001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. T. Falk, A. Ferstl and K.A. Olive, New contributions to neutralino elastic cross-sections from CP-violating phases in the MSSM, Phys. Rev. D 59 (1999) 055009 [Erratum ibid. D 60 (1999)119904] [hep-ph/9806413] [INSPIRE].

  76. M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Vainshtein, V.I. Zakharov and M.A. Shifman, Higgs particles, Sov. Phys. Usp. 23 (1980) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  78. H.-Y. Cheng, Low-energy interactions of scalar and pseudoscalar Higgs bosons with baryons, Phys. Lett. B 219 (1989) 347 [INSPIRE].

    Article  ADS  Google Scholar 

  79. H. Leutwyler, The ratios of the light quark masses, Phys. Lett. B 378 (1996) 313 [hep-ph/9602366] [INSPIRE].

    Article  ADS  Google Scholar 

  80. J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D. Feldman, K. Freese, P. Nath, B.D. Nelson and G. Peim, Predictive signatures of supersymmetry: measuring the dark matter mass and gluino mass with early LHC data, Phys. Rev. D 84 (2011) 015007 [arXiv:1102.2548] [INSPIRE].

    Article  ADS  Google Scholar 

  82. L.E. Strigari, Neutrino coherent scattering rates at direct dark matter detectors, New J. Phys. 11 (2009) 105011 [arXiv:0903.3630] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearl Sandick.

Additional information

ArXiv ePrint: 1108.0448

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amsel, S., Freese, K. & Sandick, P. Probing EWSB naturalness in unified SUSY models with dark matter. J. High Energ. Phys. 2011, 110 (2011). https://doi.org/10.1007/JHEP11(2011)110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)110

Keywords

Navigation