Skip to main content
Log in

Thermodynamic potentials from shifted boundary conditions: the scalar-field theory case

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In a thermal field theory, the cumulants of the momentum distribution can be extracted from the dependence of the Euclidean path integral on a shift in the fields built into the temporal boundary condition. When combined with the Ward identities associated with the invariance of the theory under the Poincaré group, thermodynamic potentials such as the entropy or the pressure can be directly inferred from the response of the system to the shift. Crucially the argument holds, up to harmless finite-size and discretization effects, even if translational and rotational invariance are broken to a discrete subgroup of finite shifts and rotations such as in a lattice box. The formulas are thus applicable at finite lattice spacing and volume provided the derivatives are replaced by their discrete counterpart, and no additive or multiplicative ultraviolet-divergent renormalizations are needed to take the continuum limit. In this paper we present a complete derivation of the relevant formulas in the scalar field theory, where several technical complications are avoided with respect to gauge theories. As a by-product we obtain a recursion relation among the cumulants of the momentum distribution, and formulæ for finite-volume corrections to several well-known thermodynamic identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge University Press, Cambridge U.K. (2006), pg. 428.

    Book  MATH  Google Scholar 

  2. M. Le Bellac, Thermal Field Theory, Cambridge University Press, Cambridge U.K. (2000) pg. 272.

    Google Scholar 

  3. M. Laine, Finite-temperature QCD, PoS(LAT2009)006 [arXiv:0910.5168] [INSPIRE].

  4. O. Philipsen, Lattice QCD at non-zero temperature and baryon density, arXiv:1009.4089 [INSPIRE].

  5. J. Engels, F. Karsch, H. Satz and I. Montvay, Gauge Field Thermodynamics for the SU(2) Yang-Mills System, Nucl. Phys. B 205 (1982) 545 [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Engels, J. Fingberg, F. Karsch, D. Miller and M. Weber, Nonperturbative thermodynamics of SU(N) gauge theories, Phys. Lett. B 252 (1990) 625 [INSPIRE].

    ADS  Google Scholar 

  7. G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The Equation of state at high temperatures from lattice QCD, PoS(LATTICE 2007)228 [arXiv:0710.4197] [INSPIRE].

  8. H.B. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, Phys. Rev. D 80 (2009) 051502 [arXiv:0905.4229] [INSPIRE].

    ADS  Google Scholar 

  9. L. Giusti and H.B. Meyer, Thermal momentum distribution from path integrals with shifted boundary conditions, Phys. Rev. Lett. 106 (2011) 131601 [arXiv:1011.2727] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L. Giusti and H.B. Meyer, Thermal momentum distribution from path integrals with shifted boundary conditions, in preparation.

  11. M. Della Morte and L. Giusti, Symmetries and exponential error reduction in Yang-Mills theories on the lattice, Comput. Phys. Commun. 180 (2009) 819 [arXiv:0806.2601] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Della Morte and L. Giusti, A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice, JHEP 05 (2011) 056 [arXiv:1012.2562] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Zinn-Justin, International Series of Monographs on Physics. Vol. 77: Quantum field theory and critical phenomena, Oxford University Press, Oxford U.K. (1989).

    Google Scholar 

  14. H. Kleinert and V. Schulte-Frohlinde, Critical properties of ϕ 4-theories, World Scientific, River Edge U.S.A. (2001), pg. 489.

    Book  Google Scholar 

  15. H.B. Meyer, Finite Volume Effects in Thermal Field Theory, JHEP 07 (2009) 059 [arXiv:0905.1663] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral Symmetry on the Lattice with Wilson Fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Lüscher, S. Sint, R. Sommer and H. Wittig, Nonperturbative determination of the axial current normalization constant in O(a) improved lattice QCD, Nucl. Phys. B 491 (1997) 344 [hep-lat/9611015] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Lüscher, Advanced lattice QCD, hep-lat/9802029 [INSPIRE].

  19. C.G. Callan Jr., S.R. Coleman and R. Jackiw, A New improved energy - momentum tensor, Annals Phys. 59 (1970) 42 [INSPIRE].

  20. J.C. Collins, The Energy-Momentum Tensor Revisited, Phys. Rev. D 14 (1976) 1965 [INSPIRE].

    ADS  Google Scholar 

  21. L.S. Brown, Dimensional regularization of composite operators in scalar field theory, Annals Phys. 126 (1980) 135 [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Hathrell, Trace anomalies and λϕ 4 theory in curved space, Annals Phys. 139 (1982) 136 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Caracciolo, G. Curci, P. Menotti and A. Pelissetto, The energy momentum tensor on the lattice: the scalar case, Nucl. Phys. B 309 (1988) 612 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Giusti.

Additional information

ArXiv ePrint: 1110.3136

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giusti, L., Meyer, H.B. Thermodynamic potentials from shifted boundary conditions: the scalar-field theory case. J. High Energ. Phys. 2011, 87 (2011). https://doi.org/10.1007/JHEP11(2011)087

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)087

Keywords

Navigation