Skip to main content
Log in

Z bosons at colliders: a Bayesian viewpoint

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We revisit the CDF data on di-muon production to impose constraints on a large class of Z bosons occurring in a variety of E 6 GUT based models. We analyze the dependence of these limits on various factors contributing to the production cross-section, showing that currently systematic and theoretical uncertainties play a relatively minor role. Driven by this observation, we emphasize the use of the Bayesian statistical method, which allows us to straightforwardly (i) vary the gauge coupling strength, g , of the underlying U(1); (ii) include interference effects with the Z amplitude (which are especially important for large g ); (iii) smoothly vary the U(1) charges; (iv) combine these data with the electroweak precision constraints as well as with other observables obtained from colliders such as LEP 2 and the LHC; and (v) find preferred regions in parameter space once an excess is seen. We adopt this method as a complementary approach for a couple of sample models and find limits on the Z mass, generally differing by only a few percent from the corresponding CDF ones when we follow their approach. Another general result is that the interference effects are quite relevant if one aims at discriminating between models. Finally, the Bayesian approach frees us of any ad hoc assumptions about the number of events needed to constitute a signal or exclusion limit for various actual and hypothetical reference energies and luminosities at the Tevatron and the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Leike, The phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T.G. Rizzo, Z phenomenology and the LHC, hep-ph/0610104 [INSPIRE].

  3. P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  4. P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200–202 (2010) 185 [arXiv:1001.2693] [INSPIRE].

    Article  Google Scholar 

  5. J. Erler, P. Langacker, S. Munir and E. Rojas, Improved constraints on Z bosons from electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Article  Google Scholar 

  7. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group collaboration, J. Alcaraz et al., A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0612034 [INSPIRE].

  8. CDF and D0 collaboration, M. Jaffre, Search for high mass resonances in dilepton, dijet and diboson final states at the Tevatron, PoS(EPS-HEP2009)244 [arXiv:0909.2979] [INSPIRE].

  9. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt {{s{ }}} = { 7} \) TeV, JHEP 05 (2011) 093 [arXiv:1103.0981] [INSPIRE].

    ADS  Google Scholar 

  10. ATLAS collaboration, G. Aad et al., Search for high mass dilepton resonances in pp collisions at \( \sqrt {{s{ }}} = { 7} \) TeV with the ATLAS experiment, Phys. Lett. B 700 (2011) 163 [arXiv:1103.6218] [INSPIRE].

    ADS  Google Scholar 

  11. CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Erler, Chiral models of weak scale supersymmetry, Nucl. Phys. B 586 (2000) 73 [hep-ph/0006051] [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Suematsu and Y. Yamagishi, Radiative symmetry breaking in a supersymmetric model with an extra U(1), Int. J. Mod. Phys. A 10 (1995) 4521 [hep-ph/9411239] [INSPIRE].

    ADS  Google Scholar 

  14. M. Cvetič and P. Langacker, Implications of abelian extended gauge structures from string models, Phys. Rev. D 54 (1996) 3570 [hep-ph/9511378] [INSPIRE].

    ADS  Google Scholar 

  15. J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984)150 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. R. Robinett and J.L. Rosner, Mass scales in grand unified theories, Phys. Rev. D 26 (1982) 2396 [INSPIRE].

    ADS  Google Scholar 

  17. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Google Scholar 

  18. Y. Achiman and B. Stech, Quark lepton symmetry and mass scales in an E6 unified gauge model, Phys. Lett. B 77 (1978) 389 [INSPIRE].

    ADS  Google Scholar 

  19. J. Erler and E. Rojas, Classification of U (1) models from E 6 , in preparation.

  20. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703–703] [INSPIRE].

    ADS  Google Scholar 

  21. E. Ma, Particle dichotomy and left-right decomposition of E 6 superstring models, Phys. Rev. D 36 (1987) 274 [INSPIRE].

    ADS  Google Scholar 

  22. K. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1)s and the R(b) − R(c) crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [INSPIRE].

    ADS  Google Scholar 

  23. E. Ma, Neutrino masses in an extended gauge model with E 6 particle content, Phys. Lett. B 380 (1996)286 [hep-ph/9507348] [INSPIRE].

    ADS  Google Scholar 

  24. S. King, S. Moretti and R. Nevzorov, Theory and phenomenology of an exceptional supersymmetric standard model, Phys. Rev. D 73 (2006) 035009 [hep-ph/0510419] [INSPIRE].

    ADS  Google Scholar 

  25. E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579.

    Article  Google Scholar 

  27. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Erler, P. Langacker and T.-J. Li, The Z-Z mass hierarchy in a supersymmetric model with a secluded U(1)-prime breaking sector, Phys. Rev. D 66 (2002) 015002 [hep-ph/0205001] [INSPIRE].

    ADS  Google Scholar 

  29. J. Kang, P. Langacker, T.-j. Li and T. Liu, Electroweak baryogenesis in a supersymmetric U(1)-prime model, Phys. Rev. Lett. 94 (2005) 061801 [hep-ph/0402086] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M.S. Carena, A. Daleo, B.A. Dobrescu and T.M. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 :[hep-ph/0408098] [INSPIRE].

    ADS  Google Scholar 

  31. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].

    ADS  Google Scholar 

  32. R.W. Robinett and J.L. Rosner, Prospects for a second neutral vector boson at low mass in SO(10), Phys. Rev. D 25 (1982) 3036 [Erratum ibid. D 27 (1983) 679] [INSPIRE].

    ADS  Google Scholar 

  33. CDF collaboration, F. Abe et al., Measurement of the branching fraction B(B u → J/ψπ + ) and search for B c → J/ψπ + , Phys. Rev. Lett. 77 (1996) 5176 [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Han, G. Valencia and Y. Wang, Hadron collider signatures for new interactions of top and bottom quarks, Phys. Rev. D 70 (2004) 034002 [hep-ph/0405055] [INSPIRE].

    ADS  Google Scholar 

  35. CDF collaboration, T. Aaltonen et al., Search for resonant tt production in pp collisions at \( \sqrt {s} = {1}.{96} \) TeV,Phys. Rev. Lett. 100 (2008) 231801 [arXiv:0709.0705] [INSPIRE].

    Article  ADS  Google Scholar 

  36. CDF collaboration, F. Abe et al., Search for new particles decaying to dijets in pp collisions at \( \sqrt {\text{s}} = { 1}.{8} \) TeV, Phys. Rev. Lett. 74 (1995) 3538 [hep-ex/9501001] [INSPIRE].

    Article  ADS  Google Scholar 

  37. CDF collaboration, F. Abe et al., Measurement of dijet angular distributions at CDF, Phys. Rev. Lett. 77 (1996) 5336 [Erratum ibid. 78 (1997) 4307] [hep-ex/9609011] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T.G. Rizzo, Extraction of coupling information from Z → jj, Phys. Rev. D 48 (1993) 4236 [hep-ph/9303286] [INSPIRE].

    ADS  Google Scholar 

  39. J.D. Anderson, M.H. Austern and R.N. Cahn, Measurement of Z couplings at future hadron colliders through decays to τ leptons, Phys. Rev. D 46 (1992) 290 [INSPIRE].

    ADS  Google Scholar 

  40. CDF collaboration, F. Abe et al., Search for new gauge bosons decaying into dileptons in pp collisions at \( \sqrt {\text{s}} = { 1}.{8} \) TeV, Phys. Rev. Lett. 79 (1997) 2192 [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.G. Morfin and W.K. Tung, Parton distributions from a global QCD analysis of deep inelastic scattering and lepton-pair production, Z. Phys. C 52 (1991) 13.

    ADS  Google Scholar 

  44. J. Pumplin et al., Uncertainties of predictions from parton distribution functions. 2. The Hessian method, Phys. Rev. D 65 (2001) 014013 [hep-ph/0101032] [INSPIRE].

    ADS  Google Scholar 

  45. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  46. P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  47. A. Martin, W. Stirling, R. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Petriello and S. Quackenbush, Measuring Z couplings at the CERN LHC, Phys. Rev. D 77 (2008)115004 [arXiv:0801.4389] [INSPIRE].

    ADS  Google Scholar 

  49. U. Baur, S. Keller and W. Sakumoto, QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders, Phys. Rev. D 57 (1998) 199 [hep-ph/9707301] [INSPIRE].

    ADS  Google Scholar 

  50. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650.

    Article  ADS  MATH  Google Scholar 

  51. T. Hahn, CUBA: a library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. J. Erler, Global fits to electroweak data using GAPP, hep-ph/0005084 [INSPIRE].

  53. A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun. 170 (2005) 65 [hep-ph/0408244] [INSPIRE].

    Article  ADS  Google Scholar 

  54. H. Sert, E. Cincioglu, D.A. Demir and L. Solmaz, Tevatron Higgs mass bounds: projecting U(1) models to LHC domain, Phys. Lett. B 692 (2010) 327 [arXiv:1005.1674] [INSPIRE].

    ADS  Google Scholar 

  55. J. Erler, The mass of the Higgs boson in the standard electroweak model, Phys. Rev. D 81 (2010)051301 [arXiv:1002.1320] [INSPIRE].

    ADS  Google Scholar 

  56. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  57. CDF And D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [INSPIRE].

    Article  ADS  Google Scholar 

  58. CDF collaboration, T. Aaltonen et al., First run II measurement of the W boson mass, Phys. Rev. D 77 (2008) 112001 [arXiv:0708.3642] [INSPIRE].

    ADS  Google Scholar 

  59. A. Kotwal, private communication.

  60. A. Kotwal, Search for narrow dimuon resonances at CDF, http://www.phy.duke.edu/∼kotwal/tifrDec08.pdf.

  61. C.P. Hays, A.V. Kotwal and O. Stelzer-Chilton, New techniques in the search for Z bosons and other neutral resonances, Mod. Phys. Lett. A 24 (2009) 2387 [arXiv:0910.1770] [INSPIRE].

    ADS  Google Scholar 

  62. J.L. Rosner, Forward-backward asymmetries in hadronically produced lepton pairs, Phys. Rev. D 54 (1996) 1078 [hep-ph/9512299] [INSPIRE].

    ADS  Google Scholar 

  63. CDF collaboration, T. Aaltonen et al., Search for high-mass e + e resonances in pp collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. Lett. 102 (2009) 031801 [arXiv:0810.2059] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Leike, Remark on Z limits at hadron colliders, Phys. Lett. B 402 (1997) 374 [hep-ph/9703263] [INSPIRE].

    ADS  Google Scholar 

  65. S. Godfrey, Update of discovery limits for extra neutral gauge bosons at hadron colliders, eConf C 010630 (2001) P344 [hep-ph/0201093] [INSPIRE].

    Google Scholar 

  66. E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].

    ADS  Google Scholar 

  67. J. Erler and P. Langacker, Indications for an extra neutral gauge boson in electroweak precision data, Phys. Rev. Lett. 84 (2000) 212 [hep-ph/9910315] [INSPIRE].

    Article  ADS  Google Scholar 

  68. D0 collaboration, V.M. Abazov et al., Search for a heavy neutral gauge boson in the dielectron channel with 5.4 fb −1 of pp collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Lett. B 695 (2011)88 [arXiv:1008.2023] [INSPIRE].

    ADS  Google Scholar 

  69. CDF collaboration, T. Aaltonen et al., Search for high mass resonances decaying to muon pairs in \( \sqrt {s} = {1}.{96} \) TeV pp collisions, Phys. Rev. Lett. 106 (2011) 121801 [arXiv:1101.4578] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  71. J. Kang and P. Langacker, Z discovery limits for supersymmetric E 6 models, Phys. Rev. D 71 (2005)035014 [hep-ph/0412190] [INSPIRE].

    ADS  Google Scholar 

  72. U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002)033007 [hep-ph/0108274] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoaib Munir.

Additional information

ArXiv ePrint: 1103.2659

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erler, J., Langacker, P., Munir, S. et al. Z bosons at colliders: a Bayesian viewpoint. J. High Energ. Phys. 2011, 76 (2011). https://doi.org/10.1007/JHEP11(2011)076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)076

Keywords

Navigation