Skip to main content
Log in

Examining leptogenesis with lepton flavor violation and the dark matter abundance

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Within a supersymmetric (SUSY) type-I seesaw framework with SO(10)-inspired mass relations and flavor-blind universal boundary conditions, we study the consequences of requiring that the observed baryon asymmetry of the Universe be explained by either thermal or non-thermal leptogenesis. In the former case, we find that the parameter space is very constrained. In the bulk and stop-coannihilation regions of mSUGRA parameter space (that are consistent with the measured dark matter abundance), lepton flavor-violating (LFV) processes are accessible at MEG and future experiments. However, the very high reheat temperature of the Universe needed after inflation (of about 1012 GeV) leads to a severe gravitino problem, which disfavors either thermal leptogenesis or neutralino dark matter. Non-thermal leptogenesis in the preheating phase from SUSY flat directions relaxes the gravitino problem by lowering the required reheat temperature. The baryon asymmetry can then be explained while preserving neutralino dark matter, and for the bulk or stop-coannihilation regions LFV processes should be observed in current or future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  2. V. Barger, D. Marfatia and K. Whisnant, Progress in the physics of massive neutrinos, Int. J. Mod. Phys. E 12 (2003) 569 [hep-ph/0308123] [SPIRES].

    ADS  Google Scholar 

  3. H. Fritzsch and P. Minkowski, Vector-like weak currents, massive neutrinos and neutrino beam oscillations, Phys. Lett. B 62 (1976) 72 [SPIRES].

    ADS  Google Scholar 

  4. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  5. M. Gell-Mann, P. Ramond and R. Slansky, Color embeddings, charge assignments, and proton stability in unified gauge theories, in proceedings of the workshop Supergravity, Stony Brook, NY, U.S.A., North-Holland, Amsterdam (1979).

  6. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, KEK Report No. 79-18 (1979).

  7. S. Glashow, The future of elementary particle physics, in Quarks and leptons, Cargese, France, Plenum, New York, U.S.A. (1980).

  8. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  9. V. Barger, D. Marfatia and A. Mustafayev, Neutrino sector impacts SUSY dark matter, Phys. Lett. B 665 (2008) 242 [arXiv:0804.3601][SPIRES].

    ADS  Google Scholar 

  10. V. Barger, D. Marfatia, A. Mustafayev and A. Soleimani, SUSY dark matter and lepton flavor violation, Phys. Rev. D 80 (2009) 076004 [arXiv:0908.0941] [SPIRES].

    ADS  Google Scholar 

  11. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  12. E.K. Akhmedov, M. Frigerio and A.Y. Smirnov, Probing the seesaw mechanism with neutrino data and leptogenesis, JHEP 09 (2003) 021 [hep-ph/0305322] [SPIRES].

    Article  ADS  Google Scholar 

  13. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [SPIRES].

    Article  ADS  Google Scholar 

  14. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [SPIRES].

    ADS  Google Scholar 

  15. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].

    Article  ADS  Google Scholar 

  16. P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [SPIRES].

    ADS  Google Scholar 

  17. O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/ 0512160] [SPIRES].

    ADS  Google Scholar 

  18. A. Abada, P. Hosteins, F.-X. Josse-Michaux and S. Lavignac, Successful leptogenesis in SO(10) unification with a left-right symmetric seesaw mechanism, Nucl. Phys. B 809 (2009) 183 [arXiv:0808.2058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Di Bari and A. Riotto, Successful type-I leptogenesis with SO(10)-inspired mass relations, Phys. Lett. B 671 (2009) 462 [arXiv:0809.2285] [SPIRES].

    ADS  Google Scholar 

  20. S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [SPIRES].

    ADS  Google Scholar 

  21. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].

    Article  ADS  Google Scholar 

  22. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  23. S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [SPIRES].

    ADS  Google Scholar 

  24. M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [SPIRES].

    ADS  Google Scholar 

  25. J.R. Ellis, D.V. Nanopoulos, K.A. Olive and S.-J. Rey, On the thermal regeneration rate for light gravitinos in the early universe, A stropart. Phys. 4 (1996) 371 [hep-ph/9505438] [SPIRES].

    ADS  Google Scholar 

  26. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [SPIRES].

    ADS  Google Scholar 

  27. M. Kawasaki, K. Kohri and T. Moroi, Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [SPIRES].

    ADS  Google Scholar 

  28. J. Pradler and F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [SPIRES].

    ADS  Google Scholar 

  29. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [SPIRES].

    ADS  Google Scholar 

  30. T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflationary universe, Phys. Rev. D 61 (2000) 083512 [hep-ph/9907559] [SPIRES].

    ADS  Google Scholar 

  31. T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [SPIRES].

    ADS  Google Scholar 

  32. F. Hahn-Woernle and M. Plümacher, Effects of reheating on leptogenesis, Nucl. Phys. B 806 (2009) 68 [arXiv:0801.3972] [SPIRES].

    Article  ADS  Google Scholar 

  33. G.F. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [SPIRES].

    Article  ADS  Google Scholar 

  34. G.N. Felder, L. Kofman and A.D. Linde, Instant preheating, Phys. Rev. D 59 (1999) 123523 [hep-ph/9812289] [SPIRES].

    ADS  Google Scholar 

  35. G.F. Giudice, L. Mether, A. Riotto and F. Riva, Supersymmetric leptogenesis and the gravitino bound, Phys. Lett. B 664 (2008) 21 [arXiv:0804.0166] [SPIRES].

    ADS  Google Scholar 

  36. W. Konetschny and W. Kummer, Nonconservation of total lepton umber with scalar bosons, Phys. Lett. B 70 (1977) 433 [SPIRES].

    ADS  Google Scholar 

  37. T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × Υ(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].

    ADS  Google Scholar 

  38. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].

    ADS  Google Scholar 

  39. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  40. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × Υ(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  41. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  42. P. Hosteins, S. Lavignac and C.A. Savoy, Quark-lepton unification and eight-fold ambiguity in the left-right symmetric seesaw mechanism, Nucl. Phys. B 755 (2006) 137 [hep-ph/0606078] [SPIRES].

    Article  ADS  Google Scholar 

  43. C.H. Albright, Normal vs. inverted hierarchy in type-I seesaw models, Phys. Lett. B 599 (2004) 285 [hep-ph/0407155] [SPIRES].

    ADS  Google Scholar 

  44. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].

    ADS  Google Scholar 

  45. A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [SPIRES].

    Article  ADS  Google Scholar 

  46. M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B 389 (1996) 693 [hep-ph/9607310] [SPIRES].

    ADS  Google Scholar 

  47. L. Covi and E. Roulet, Baryogenesis from mixed particle decays, Phys. Lett. B 399 (1997) 113 [hep-ph/9611425] [SPIRES].

    ADS  Google Scholar 

  48. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [SPIRES].

    ADS  Google Scholar 

  49. S. Blanchet and P. Di Bari, New aspects of leptogenesis bounds, Nucl. Phys. B 807 (2009) 155 [arXiv:0807.0743 ][SPIRES].

    Article  ADS  Google Scholar 

  50. J. Racker and E. Roulet, Leptogenesis, Z’ bosons and the reheating temperature of the universe, JHEP 03 (2009) 065 [arXiv:0812.4285] [SPIRES].

    Article  ADS  Google Scholar 

  51. H. Baer, C. Balázs, J.K. Mizukoshi and X. Tata, Can precision measurements of slepton masses probe righthanded neutrinos?, Phys. Rev. D 63 (2001) 055011 [hep-ph/0010068] [SPIRES].

    ADS  Google Scholar 

  52. K. Kadota and K.A. Olive, Heavy right-handed neutrinos and dark matter in the νCMSSM, Phys. Rev. D 80 (2009) 095015 [arXiv:0909.3075] [SPIRES].

    ADS  Google Scholar 

  53. Daya-Bay collaboration, X. Guo et al., A precision measurement of the neutrino mixing angle θ(13) using reactor antineutrinos at Daya Bay, hep-ex/0701029 [SPIRES].

  54. Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: A search for the neutrino mixing angle θ(13), hep-ex/0606025 [SPIRES].

  55. W. Buchmüller and M. Plümacher, Spectator processes and baryogenesis, Phys. Lett. B 511 (2001) 74 [hep-ph/0104189] [SPIRES].

    ADS  Google Scholar 

  56. E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Basboll and S. Hannestad, Decay of heavy Majorana neutrinos using the full Boltzmann equation including its implications for leptogenesis, JCA P 01 (2007) 003 [hep-ph/0609025] [SPIRES].

    ADS  Google Scholar 

  58. F. Hahn-Woernle, M. Plümacher and Y.Y.Y. Wong, Full Boltzmann equations for leptogenesis including scattering, JCA P 08 (2009) 028 [arXiv:0907.0205] [SPIRES].

    ADS  Google Scholar 

  59. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027 [arXiv:0911.4122] [SPIRES].

    ADS  Google Scholar 

  60. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027 [arXiv:0909.1559] [SPIRES].

    ADS  Google Scholar 

  61. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Leptogenesis from quantum interference in a thermal bath, Phys. Rev. Lett. 104 (2010) 121102 [arXiv:1001.3856] [SPIRES].

    Article  ADS  Google Scholar 

  62. M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite number density corrections to leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [SPIRES].

    Article  ADS  Google Scholar 

  63. M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028 [arXiv:1002.0331] [SPIRES].

    ADS  Google Scholar 

  64. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  65. MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ +e +γ , Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].

    Article  ADS  Google Scholar 

  66. Belle collaboration, K. Hayasaka et al., New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [SPIRES].

    ADS  Google Scholar 

  67. BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ → eγ and τ → μγ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [SPIRES].

    Article  ADS  Google Scholar 

  68. SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES].

    Article  ADS  Google Scholar 

  69. Belle collaboration, Y. Miyazaki et al., Search for lepton flavor violating τ decays into three leptons, Phys. Lett. B 660 (2008) 154 [arXiv:0711.2189] [SPIRES].

    ADS  Google Scholar 

  70. SINDRUM II. collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [SPIRES].

    ADS  Google Scholar 

  71. MEG collaboration, S. Ritt, Status of the MEG expriment μeγ, Nucl. Phys. Proc. Suppl. 162 (2006) 279 [SPIRES].

    Article  ADS  Google Scholar 

  72. T. Mori, MEG: The experiment to search for μeγ, Nucl. Phys. Proc. Suppl. 169 (2007) 166 [SPIRES].

    Article  ADS  Google Scholar 

  73. M. Bona et al., SuperB: A high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].

  74. SuperKEKB Physics Working Group collaboration, A. G. Akeroydetal., Physics at super B factory, hep-ex/0406071 [SPIRES].

  75. W.J. Marciano, T. Mori and J.M. Roney, Charged lepton flavor violation experiments, Ann. Rev. Nucl. Part. Sci. 58 (2008) 315 [SPIRES].

    Article  ADS  Google Scholar 

  76. The PRIME Working Group, Y. Mori et al., An experimental search for the μ e conversion process at an ultimate sensitivity of the order of 10−18 with PRISM, http://www-ps.kek.jp/jhf-np/LOIlist/LOIlist.html.

  77. Mu2e collaboration, E.C. Dukes et al., Proposal to search for μ Ne N with a single event sensitivity below 10−16, http://mu2e.fnal.gov/public/hep/index.shtml.

  78. A. De Simone, M. Garny, A. Ibarra and C. Weniger, Supersymmetric leptogenesis with a light hidden sector, JCAP 07 (2010) 017 [arXiv:1004.4890] [SPIRES].

    Google Scholar 

  79. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [SPIRES].

    ADS  Google Scholar 

  80. K. Enqvist and A. Mazumdar, Cosmological consequences of MSSM flat directions, Phys. Rept. 380 (2003) 99 [hep-ph/0209244] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett. 75 (1995) 398 [hep-ph/9503303] [SPIRES].

    Article  ADS  Google Scholar 

  82. W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R -parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azar Mustafayev.

Additional information

ArXiv ePrint: 1006.2857

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchet, S., Marfatia, D. & Mustafayev, A. Examining leptogenesis with lepton flavor violation and the dark matter abundance. J. High Energ. Phys. 2010, 38 (2010). https://doi.org/10.1007/JHEP11(2010)038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)038

Keywords

Navigation