Skip to main content
Log in

HW ±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a generator for the production of a Higgs boson H in association with a vector boson V = W or Z (including subsequent V decay) plus zero and one jet, that can be used in conjunction with general-purpose shower Monte Carlo generators, according to the POWHEG method, as implemented within the POWHEG BOX framework.

We have computed the virtual corrections using GoSam, a program for the automatic construction of virtual amplitudes. In order to do so, we have built a general interface of the POWHEG BOX to the GoSam package. With this addition, the construction of a POWHEG generator within the POWHEG BOX is now fully automatized, except for the construction of the Born phase space.

Our HV + 1 jet generators can be run with the recently proposed MiNLO method for the choice of scales and the inclusion of Sudakov form factors. Since the HV production is very similar to V production, we were able to apply an improved MiNLO procedure, that was recently used in H and V production, also in the present case. This procedure is such that the resulting generator achieves NLO accuracy not only for inclusive distributions in HV + 1 jet production but also in HV production, i.e. when the associated jet is not resolved, yielding a further example of matched calculation with no matching scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044 (2012).

  2. ATLAS collaboration, Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector, Phys. Lett. B 718 (2012) 369 [arXiv:1207.0210] [INSPIRE].

    ADS  Google Scholar 

  3. CDF, D0 collaboration, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CDF collaboration, T. Aaltonen et al., Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set, Phys. Rev. Lett. 109 (2012) 111802 [arXiv:1207.1707] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D0 collaboration, V.M. Abazov et al., Combined search for the standard model Higgs boson decaying to \( b\overline{b} \) using the D0 Run II data set, Phys. Rev. Lett. 109 (2012) 121802 [arXiv:1207.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  6. ATLAS collaboration, Search for the Associated Higgs Boson Production in the WHWWW (∗)lνlνlν decay mode using 4.7 fb −1 of data collected with the ATLAS detector at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-078 (2012).

  7. CMs collabroation, Search for SM Higgs in WHWWW → 3l3ν, CMS-PAS-HIG-13-009 (2013).

  8. CMS collaboration, Search for the standard model Higgs boson decaying to τ pairs produced in association with a W or Z boson, CMS-PAS-HIG-12-051 (2012).

  9. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  10. K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  14. E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [INSPIRE].

  15. J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  17. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

  19. G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092 [arXiv:1202.5475] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. J. Kuipers, T. Ueda, J. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].

    Article  ADS  Google Scholar 

  26. G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: a form library for helicity spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. T. Reiter, Optimising code generation with haggies, Comput. Phys. Commun. 181 (2010) 1301 [arXiv:0907.3714] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Cullen et al., Golem95C: a library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. R.K. Ellis, W. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. J. Kodaira and L. Trentadue, Summing soft emission in QCD, Phys. Lett. B 112 (1982) 66 [INSPIRE].

    Article  ADS  Google Scholar 

  37. C. Davies and W.J. Stirling, Nonleading corrections to the Drell-Yan cross-section at small transverse momentum, Nucl. Phys. B 244 (1984) 337 [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Davies, B. Webber and W.J. Stirling, Drell-Yan cross-sections at small transverse momentum, Nucl. Phys. B 256 (1985) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  39. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  40. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  46. http://gosam.hepforge.org/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Oleari.

Additional information

ArXiv ePrint: 1306.2542

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luisoni, G., Nason, P., Oleari, C. et al. HW ±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO. J. High Energ. Phys. 2013, 83 (2013). https://doi.org/10.1007/JHEP10(2013)083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)083

Keywords

Navigation