Skip to main content
Log in

Holographic entanglement entropy in nonlocal theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute holographic entanglement entropy in two strongly coupled non-local field theories: the dipole and the noncommutative deformations of SYM theory. We find that entanglement entropy in the dipole theory follows a volume law for regions smaller than the length scale of nonlocality and has a smooth cross-over to an area law for larger regions. In contrast, in the noncommutative theory the entanglement entropy follows a volume law for up to a critical length scale at which a phase transition to an area law occurs. The critical length scale increases as the UV cutoff is raised, which is indicative of UV/IR mixing and implies that entanglement entropy in the noncommutative theory follows a volume law for arbitrary large regions when the size of the region is fixed as the UV cutoff is removed to infinity. Comparison of behaviour between these two theories allows us to explain the origin of the volume law. Since our holographic duals are not asymptotically AdS, minimal area surfaces used to compute holographic entanglement entropy have novel behaviours near the boundary of the dual spacetime. We discuss implications of our results on the scrambling (thermalization) behaviour of these nonlocal field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  3. T. Takayanagi, Entanglement entropy from a holographic viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Nishioka and T. Takayanagi, AdS bubbles, entropy and closed string tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropyA review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J.L. Barbon and C.A. Fuertes, Holographic entanglement entropy probes (non)locality, JHEP 04 (2008) 096 [arXiv:0803.1928] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Lashkari, Equilibration of small and large subsystems in field theories and matrix models, arXiv:1304.6416 [INSPIRE].

  10. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Requardt, Entanglement-entropy for groundstates, low-lying and highly excited eigenstates of general (lattice) hamiltonians, hep-th/0605142 [INSPIRE].

  12. V. Alba, M. Fagotti and P. Calabrese, Entanglement entropy of excited states, J. Stat. Mech. (2009) P10020 [arXiv:0909.1999].

  13. M. Edalati, W. Fischler, J.F. Pedraza and W. Tangarife Garcia, Fast scramblers and non-commutative gauge theories, JHEP 07 (2012) 043 [arXiv:1204.5748] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.L. Barbon and C.A. Fuertes, A note on the extensivity of the holographic entanglement entropy, JHEP 05 (2008) 053 [arXiv:0801.2153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. W. Fischler, A. Kundu and S. Kundu, Holographic entanglement in a noncommutative gauge theory, arXiv:1307.2932 [INSPIRE].

  16. A. Hashimoto and N. Itzhaki, Noncommutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.M. Maldacena and J.G. Russo, Large-N limit of noncommutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].

    Article  ADS  Google Scholar 

  19. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Li and Y.-S. Wu, Holography and noncommutative Yang-Mills, Phys. Rev. Lett. 84 (2000) 2084 [hep-th/9909085] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. Chakravarty, K. Dasgupta, O.J. Ganor and G. Rajesh, Pinned branes and new non-Lorentz invariant theories, Nucl. Phys. B 587 (2000) 228 [hep-th/0002175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super Yang-Mills theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Dasgupta and M. Sheikh-Jabbari, Noncommutative dipole field theories, JHEP 02 (2002) 002 [hep-th/0112064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Narayan, T. Takayanagi and S.P. Trivedi, AdS plane waves and entanglement entropy, JHEP 04 (2013) 051 [arXiv:1212.4328] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  30. E. Tonni, Holographic entanglement entropy: near horizon geometry and disconnected regions, JHEP 05 (2011) 004 [arXiv:1011.0166] [INSPIRE].

    Article  ADS  Google Scholar 

  31. W. Fischler, A. Kundu and S. Kundu, Holographic mutual information at finite temperature, Phys. Rev. D 87 (2013) 126012 [arXiv:1212.4764] [INSPIRE].

    ADS  Google Scholar 

  32. R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].

    ADS  Google Scholar 

  33. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    Article  ADS  Google Scholar 

  34. V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null geodesics, local CFT operators and AdS/CFT for subregions, Phys. Rev. D 88 (2013) 064057 [arXiv:1209.4641] [INSPIRE].

    ADS  Google Scholar 

  36. A. Hashimoto and N. Itzhaki, Traveling faster than the speed of light in noncommutative geometry, Phys. Rev. D 63 (2001) 126004 [hep-th/0012093] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. B. Durhuus and T. Jonsson, Noncommutative waves have infinite propagation speed, JHEP 10 (2004) 050 [hep-th/0408190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE].

  40. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. W. Li and T. Takayanagi, Holography and entanglement in flat spacetime, Phys. Rev. Lett. 106 (2011) 141301 [arXiv:1010.3700] [INSPIRE].

    Article  ADS  Google Scholar 

  42. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Rabideau.

Additional information

ArXiv ePrint: 1307.3517

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karczmarek, J.L., Rabideau, C. Holographic entanglement entropy in nonlocal theories. J. High Energ. Phys. 2013, 78 (2013). https://doi.org/10.1007/JHEP10(2013)078

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)078

Keywords

Navigation