Skip to main content
Log in

Large N and bosonization in three dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Bosonization is normally thought of as a purely two-dimensional phenomenon, and generic field theories with fermions in D > 2 are not expected be describable by local bosonic actions, except in some special cases. We point out that 3D SU(N) gauge theories on \( {{\mathbb{R}}^{1,1 }}\times S_L^1 \) with adjoint fermions can be bosonized in the large N limit. The key feature of such theories is that they enjoy large N volume independence for arbitrary circle size L. A consequence of this is a large N equivalence between these 3D gauge theories and certain 2D gauge theories, which matches a set of correlation functions in the 3D theories to corresponding observables in the 2D theories. As an example, we focus on a 3D SU(N) gauge theory with one flavor of adjoint Majorana fermions and derive the large-N equivalent 2D gauge theory. The extra dimension is encoded in the color degrees of freedom of the 2D theory. We then apply the technique of non-Abelian bosonization to the 2D theory to obtain an equivalent local theory written purely in terms of bosonic variables. Hence the bosonized version of the large N three-dimensional theory turns out to live in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Coleman, The quantum sine-Gordon equation as the massive thirring model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].

    ADS  Google Scholar 

  2. S. Mandelstam, Soliton operators for the quantized sine-Gordon equation, Phys. Rev. D 11 (1975) 3026 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Nonabelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. P. Di Vecchia and P. Rossi, On the equivalence between the Wess-Zumino action and the free Fermi theory in two-dimensions, Phys. Lett. B 140 (1984) 344 [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. Di Vecchia, B. Durhuus and J. Petersen, The Wess-Zumino action in two-dimensions and nonabelian bosonization, Phys. Lett. B 144 (1984) 245 [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Gonzales and A. Redlich, Nonabelian bosonization in two-dimensions using path integrals, Phys. Lett. B 147 (1984) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  7. D.J. Gross, I.R. Klebanov, A.V. Matytsin and A.V. Smilga, Screening versus confinement in (1 + 1)-dimensions, Nucl. Phys. B 461 (1996) 109 [hep-th/9511104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Deser and A. Redlich, CP 1 -fermion correspondence in D = 3, Phys. Rev. Lett. 61 (1988) 1541 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Burgess, C. Lütken and F. Quevedo, Bosonization in higher dimensions, Phys. Lett. B 336 (1994) 18 [hep-th/9407078] [INSPIRE].

    Article  ADS  Google Scholar 

  10. E.H. Fradkin and F.A. Schaposnik, The fermion-boson mapping in three-dimensional quantum field theory, Phys. Lett. B 338 (1994) 253 [hep-th/9407182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Bralic, E.H. Fradkin, V. Manias and F.A. Schaposnik, Bosonization of three-dimensional nonAbelian fermion field theories, Nucl. Phys. B 446 (1995) 144 [hep-th/9502066] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Banerjee, Bosonization in three-dimensional quantum field theory, Phys. Lett. B 358 (1995) 297 [hep-th/9504130] [INSPIRE].

    Article  ADS  Google Scholar 

  13. N. Banerjee, R. Banerjee and S. Ghosh, Non-abelian bosonization in three-dimensional field theory, Nucl. Phys. B 481 (1996) 421 [hep-th/9607065] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Le Guillou, E. Moreno, C. Núñez and F. Schaposnik, Non-abelian bosonization in two-dimensions and three-dimensions, Nucl. Phys. B 484 (1997) 682 [hep-th/9609202] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Le Guillou, E. Moreno, C. Núñez and F. Schaposnik, On three-dimensional bosonization, Phys. Lett. B 409 (1997) 257 [hep-th/9703048] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large-N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Narayanan and H. Neuberger, Large-N reduction in continuum, Phys. Rev. Lett. 91 (2003) 081601 [hep-lat/0303023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large-N c QCD-like gauge theories, JHEP 06 (2007) 019 [hep-th/0702021] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Bhanot, U.M. Heller and H. Neuberger, The quenched Eguchi-Kawai model, Phys. Lett. B 113 (1982) 47 [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Schmaltz, Duality of nonsupersymmetric large-N gauge theories, Phys. Rev. D 59 (1999) 105018 [hep-th/9805218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. P. Kovtun, M. Ünsal and L.G. Yaffe, Nonperturbative equivalences among large-N c gauge theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034 [hep-th/0311098] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Kovtun, M. Ünsal and L.G. Yaffe, Necessary and sufficient conditions for non-perturbative equivalences of large-N c orbifold gauge theories, JHEP 07 (2005) 008 [hep-th/0411177] [INSPIRE].

    Article  ADS  Google Scholar 

  24. O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-matter theories and bosonization in three dimensions, arXiv:1207.4593 [INSPIRE].

  25. E. Witten, Supersymmetric index of three-dimensional gauge theory, hep-th/9903005 [INSPIRE].

  26. A. Agarwal and V. Nair, Supersymmetry and mass gap in 2 + 1 dimensions: a gauge invariant hamiltonian analysis, Phys. Rev. D 85 (2012) 085011 [arXiv:1201.6609] [INSPIRE].

    ADS  Google Scholar 

  27. D. Karabali and V. Nair, A gauge invariant hamiltonian analysis for non-abelian gauge theories in (2 + 1)-dimensions, Nucl. Phys. B 464 (1996) 135 [hep-th/9510157] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Karabali and V. Nair, On the origin of the mass gap for non-abelian gauge theories in (2 + 1)-dimensions, Phys. Lett. B 379 (1996) 141 [hep-th/9602155] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Karabali, C.-j. Kim and V. Nair, Planar Yang-Mills theory: hamiltonian, regulators and mass gap, Nucl. Phys. B 524 (1998) 661 [hep-th/9705087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Karabali, C.-j. Kim and V. Nair, On the vacuum wave function and string tension of Yang-Mills theories in (2 + 1)-dimensions, Phys. Lett. B 434 (1998) 103 [hep-th/9804132] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Agarwal, D. Karabali and V. Nair, Yang-Mills theory in 2 + 1 dimensions: coupling of matter fields and string-breaking effects, Nucl. Phys. B 790 (2008) 216 [arXiv:0705.0394] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Greensite, The confinement problem in lattice gauge theory, Prog. Part. Nucl. Phys. 51 (2003) 1 [hep-lat/0301023] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

    ADS  Google Scholar 

  34. O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP 11 (1998) 018 [hep-th/9807205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. E. Poppitz and M. Ünsal, AdS/CFT and large-N volume independence, Phys. Rev. D 82 (2010) 066002 [arXiv:1005.3519] [INSPIRE].

    ADS  Google Scholar 

  36. E. Witten, Theta vacua in two-dimensional quantum chromodynamics, Nuovo Cim. A 51 (1979) 325 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. P.F. Bedaque, M.I. Buchoff, A. Cherman and R.P. Springer, Can fermions save large-N dimensional reduction?, JHEP 10 (2009) 070 [arXiv:0904.0277] [INSPIRE].

    Article  ADS  Google Scholar 

  38. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. I. Montvay and G. Münster, Quantum fields on a lattice, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1997).

  40. F. Karsch, SU(N) gauge theory couplings on asymmetric lattices, Nucl. Phys. B 205 (1982) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Burgers, F. Karsch, A. Nakamura and I. Stamatescu, QCD on anisotropic lattices, Nucl. Phys. B 304 (1988) 587 [INSPIRE].

    Article  ADS  Google Scholar 

  42. T.R. Klassen, The anisotropic Wilson gauge action, Nucl. Phys. B 533 (1998) 557 [hep-lat/9803010] [INSPIRE].

    Article  ADS  Google Scholar 

  43. T.R. Klassen, Nonperturbative improvement of the anisotropic Wilson QCD action, Nucl. Phys. Proc. Suppl. 73 (1999) 918 [hep-lat/9809174] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. P. Chen, Heavy quarks on anisotropic lattices: The Charmonium spectrum, Phys. Rev. D 64 (2001) 034509 [hep-lat/0006019] [INSPIRE].

    ADS  Google Scholar 

  45. J. Harada, A.S. Kronfeld, H. Matsufuru, N. Nakajima and T. Onogi, O(a) improved quark action on anisotropic lattices and perturbative renormalization of heavy-light currents, Phys. Rev. D 64 (2001) 074501 [hep-lat/0103026] [INSPIRE].

    ADS  Google Scholar 

  46. P.F. Bedaque, M.I. Buchoff and A. Walker-Loud, Effective field theory for the anisotropic Wilson lattice action, Phys. Rev. D 77 (2008) 074501 [arXiv:0708.2254] [INSPIRE].

    ADS  Google Scholar 

  47. T. Reisz, A power counting theorem for feynman integrals on the lattice, Commun. Math. Phys. 116 (1988) 81 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M.F. Golterman and D.N. Petcher, A local interactive lattice model with supersymmetry, Nucl. Phys. B 319 (1989) 307 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. S. Catterall and E. Gregory, A lattice path integral for supersymmetric quantum mechanics, Phys. Lett. B 487 (2000) 349 [hep-lat/0006013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. D.B. Kaplan, Recent developments in lattice supersymmetry, Nucl. Phys. Proc. Suppl. 129 (2004) 109 [hep-lat/0309099] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Giedt, R. Koniuk, E. Poppitz and T. Yavin, Less naive about supersymmetric lattice quantum mechanics, JHEP 12 (2004) 033 [hep-lat/0410041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J.W. Elliott and G.D. Moore, Three dimensional N = 2 supersymmetry on the lattice, JHEP 11 (2005) 010 [hep-lat/0509032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. J.W. Elliott and G.D. Moore, 3D N = 1 SYM Chern-Simons theory on the lattice, JHEP 11 (2007) 067 [arXiv:0708.3214] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. B. Bringoltz, Large-N volume reduction of lattice QCD with adjoint Wilson fermions at weak-coupling, JHEP 06 (2009) 091 [arXiv:0905.2406] [INSPIRE].

    Article  ADS  Google Scholar 

  55. B. Bringoltz, Partial breakdown of center symmetry in large-N QCD with adjoint Wilson fermions, JHEP 01 (2010) 069 [arXiv:0911.0352] [INSPIRE].

    Article  ADS  Google Scholar 

  56. E. Poppitz and M. Ünsal, Comments on large-N volume independence, JHEP 01 (2010) 098 [arXiv:0911.0358] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A.M. Polyakov and P. Wiegmann, Theory of nonabelian Goldstone bosons, Phys. Lett. B 131 (1983) 121 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. P. Wiegmann, On the theory of nonabelian Goldstone bosons in two-dimensions: exact solution of the O(3) nonlinear σ-model, Phys. Lett. B 141 (1984) 217 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. V. Fateev, V. Kazakov and P. Wiegmann, Principal chiral field at large-N, Nucl. Phys. B 424 (1994) 505 [hep-th/9403099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. J.C. Myers and M.C. Ogilvie, New phases of SU(3) and SU(4) at finite temperature, Phys. Rev. D 77 (2008) 125030 [arXiv:0707.1869] [INSPIRE].

    ADS  Google Scholar 

  61. M.C. Ogilvie, P.N. Meisinger and J.C. Myers, Exploring partially confined phases, PoS(LATTICE 2007)213 [arXiv:0710.0649] [INSPIRE].

  62. M. Ünsal, Quantum phase transitions and new scales in QCD-like theories, Phys. Rev. Lett. 102 (2009) 182002 [arXiv:0807.0466] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Shifman and M. Ünsal, QCD-like theories on R 3 × S 1 : a smooth journey from small to large r(S 1) with double-trace deformations, Phys. Rev. D 78 (2008) 065004 [arXiv:0802.1232] [INSPIRE].

    ADS  Google Scholar 

  64. M. Shifman and M. Ünsal, Multiflavor QCD * on R 3 × S 1 : studying transition from abelian to non-abelian confinement, Phys. Lett. B 681 (2009) 491 [arXiv:0901.3743] [INSPIRE].

    Article  ADS  Google Scholar 

  65. T.J. Hollowood and J.C. Myers, Finite volume phases of large-N gauge theories with massive adjoint fermions, JHEP 11 (2009) 008 [arXiv:0907.3665] [INSPIRE].

    Article  ADS  Google Scholar 

  66. J.C. Myers and M.C. Ogilvie, Exotic phases of finite temperature SU(N) gauge theories, Nucl. Phys. A 820 (2009) 187C [arXiv:0810.2266] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J.C. Myers and M.C. Ogilvie, Phase diagrams of SU(N) gauge theories with fermions in various representations, JHEP 07 (2009) 095 [arXiv:0903.4638] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. A. Gonzalez-Arroyo and M. Okawa, The twisted Eguchi-Kawai model: a reduced model for large-N lattice gauge theory, Phys. Rev. D 27 (1983) 2397 [INSPIRE].

    ADS  Google Scholar 

  69. C. Burgess and F. Quevedo, Non-abelian bosonization as duality, Phys. Lett. B 329 (1994) 457 [hep-th/9403173] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. A.M. Polyakov and P. Wiegmann, Goldstone fields in two-dimensions with multivalued actions, Phys. Lett. B 141 (1984) 223 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. D. Kutasov and A. Schwimmer, Universality in two-dimensional gauge theory, Nucl. Phys. B 442 (1995) 447 [hep-th/9501024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. Y. Frishman and J. Sonnenschein, Non-perturbative field theory: from two-dimensional conformal field theory to QCD in four dimensions, arXiv:1004.4859 [INSPIRE].

  73. A.V. Smilga, Two-dimensional instantons with bosonization and physics of adjoint QCD 2, Phys. Rev. D 54 (1996) 7757 [hep-th/9607007] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  74. P.C. Argyres, M. Ünsal and M. Ünsal, The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion and renormalon effects, JHEP 08 (2012) 063 [arXiv:1206.1890] [INSPIRE].

    Article  ADS  Google Scholar 

  75. P. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev. Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Hietanen and R. Narayanan, The large-N limit of four dimensional Yang-Mills field coupled to adjoint fermions on a single site lattice, JHEP 01 (2010) 079 [arXiv:0911.2449] [INSPIRE].

    Article  ADS  Google Scholar 

  77. B. Bringoltz and S.R. Sharpe, Non-perturbative volume-reduction of large-N QCD with adjoint fermions, Phys. Rev. D 80 (2009) 065031 [arXiv:0906.3538] [INSPIRE].

    ADS  Google Scholar 

  78. B. Bringoltz and S.R. Sharpe, Volume independence of large-N QCD with adjoint fermions, PoS(LAT2009)048 [arXiv:0909.1843] [INSPIRE].

  79. T. Azeyanagi, M. Hanada, M. Ünsal and R. Yacoby, Large-N reduction in QCD-like theories with massive adjoint fermions, Phys. Rev. D 82 (2010) 125013 [arXiv:1006.0717] [INSPIRE].

    ADS  Google Scholar 

  80. S. Catterall, R. Galvez and M. Ünsal, Realization of center symmetry in two adjoint flavor large-N Yang-Mills, JHEP 08 (2010) 010 [arXiv:1006.2469] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Hietanen and R. Narayanan, Eguchi-Kawai model with dynamical adjoint fermions, PoS(LAT2009)215 [arXiv:1001.2856] [INSPIRE].

  82. A. Hietanen and R. Narayanan, Large-N reduction of SU(N) Yang-Mills theory with massive adjoint overlap fermions, Phys. Lett. B 698 (2011) 171 [arXiv:1011.2150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. B. Bringoltz, M. Koren and S.R. Sharpe, Large-N reduction in QCD with two adjoint Dirac fermions, Phys. Rev. D 85 (2012) 094504 [arXiv:1106.5538] [INSPIRE].

    ADS  Google Scholar 

  84. A. Hietanen and R. Narayanan, Numerical evidence for non-analytic behavior in the β-function of large-N SU(N) gauge theory coupled to an adjoint Dirac fermion, Phys. Rev. D 86 (2012) 085002 [arXiv:1204.0331] [INSPIRE].

    ADS  Google Scholar 

  85. K. Demeterfi, I.R. Klebanov and G. Bhanot, Glueball spectrum in a (1 + 1)-dimensional model for QCD, Nucl. Phys. B 418 (1994) 15 [hep-th/9311015] [INSPIRE].

    Article  ADS  Google Scholar 

  86. G. Bhanot, K. Demeterfi and I.R. Klebanov, (1 + 1)-dimensional large-N QCD coupled to adjoint fermions, Phys. Rev. D 48 (1993) 4980 [hep-th/9307111] [INSPIRE].

    ADS  Google Scholar 

  87. Y. Matsumura, N. Sakai and T. Sakai, Mass spectra of supersymmetric Yang-Mills theories in (1 + 1)-dimensions, Phys. Rev. D 52 (1995) 2446 [hep-th/9504150] [INSPIRE].

    ADS  Google Scholar 

  88. M. Harada, J.R. Hiller, S. Pinsky and N. Salwen, Improved results for N = (2, 2) super Yang-Mills theory using supersymmetric discrete light-cone quantization, Phys. Rev. D 70 (2004) 045015 [hep-th/0404123] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  89. D. Dorigoni, G. Veneziano and J. Wosiek, Dimensionally reduced SYM 4 at large-N: an intriguing Coulomb approximation, JHEP 06 (2011) 051 [arXiv:1011.1200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [INSPIRE].

    Article  ADS  Google Scholar 

  91. S.R. Coleman, R. Jackiw and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Annals Phys. 93 (1975) 267 [INSPIRE].

    Article  ADS  Google Scholar 

  92. A. Armoni, Y. Frishman and J. Sonnenschein, The string tension in massive QCD in two-dimensions, Phys. Rev. Lett. 80 (1998) 430 [hep-th/9709097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. A. Armoni, D. Dorigoni and G. Veneziano, k-string tension from Eguchi-Kawai reduction, JHEP 10 (2011) 086 [arXiv:1108.6196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Dorigoni.

Additional information

ArXiv ePrint: 1208.1769

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherman, A., Dorigoni, D. Large N and bosonization in three dimensions. J. High Energ. Phys. 2012, 173 (2012). https://doi.org/10.1007/JHEP10(2012)173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)173

Keywords

Navigation