Skip to main content
Log in

Thermodynamics of superstring on near-extremal NS5 and effective Hagedorn behavior

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the thermodynamical torus partition function of superstring on the near-extremal black NS5-brane background. The exact partition function has been computed with the helps of our previous works: [arXiv:1012.5721 [hep-th]], [arXiv:1109.3365[hep-th]], and naturally decomposed into two parts. The first part is contributed from strings freely propagating in the asymptotic region, which are identified as the superstring gas at the Hawking temperature on the linear-dilaton background. The second part includes the contribution localized around the ‘tip of cigar’, which characterizes the non-extremality. Remarkably, the latter part includes massless excitations with non-vanishing thermal winding, which signifies that the Hagedorn-like behavior effectively appears, even though the Hawking temperature is much lower than the Hagedorn temperature. We also explore the high-temperature backgrounds defined by the orbifolding along the Euclidean time direction. In those cases, the thermal winding modes localized around the tip are found to be tachyonic, reflecting the singularities of Euclidean backgrounds caused by orbifolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3 (1965) 147 [INSPIRE].

    Google Scholar 

  2. B. Sathiapalan, Vortices on the string world sheet and constraints on toral compactification, Phys. Rev. D 35 (1987) 3277 [INSPIRE].

    ADS  Google Scholar 

  3. Y. Kogan, Vortices on the world sheet and strings critical dynamics, JETP Lett. 45 (1987) 709 [Pisma Zh. Eksp. Teor. Fiz. 45 (1987) 556] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. K. O’Brien and C. Tan, Modular invariance of thermopartition function and global phase structure of heterotic string, Phys. Rev. D 36 (1987) 1184 [INSPIRE].

    ADS  Google Scholar 

  5. J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys. B 310 (1988) 291 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. J.M. Maldacena and A. Strominger, Semiclassical decay of near extremal five-branes, JHEP 12 (1997) 008 [hep-th/9710014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. I. Bars and D. Nemeschansky, String propagation in backgrounds with curved space-time, Nucl. Phys. B 348 (1991) 89 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Eguchi and Y. Sugawara, Non-holomorphic modular forms and SL(2, \( \mathbb{R} \))/U(1) superconformal field theory, JHEP 03 (2011) 107 [arXiv:1012.5721] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. Y. Sugawara, Comments on non-holomorphic modular forms and Non-compact superconformal field theories, JHEP 01 (2012) 098 [arXiv:1109.3365] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in string theory and CFT, Nucl. Phys. B 358 (1991) 600 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Giveon and D. Kutasov, Comments on double scaled little string theory, JHEP 01 (2000) 023 [hep-th/9911039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. T. Eguchi and Y. Sugawara, SL(2, \( \mathbb{R} \))/U(1) supercoset and elliptic genera of noncompact Calabi-Yau manifolds, JHEP 05 (2004) 014 [hep-th/0403193] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Hanany, N. Prezas and J. Troost, The partition function of the two-dimensional black hole conformal field theory, JHEP 04 (2002) 014 [hep-th/0202129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Kutasov and D. Sahakyan, Comments on the thermodynamics of little string theory, JHEP 02 (2001) 021 [hep-th/0012258] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Polchinski, Evaluation of the one loop string path integral, Commun. Math. Phys. 104 (1986) 37 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, unpublished.

  24. V. Kazakov, I.K. Kostov and D. Kutasov, A matrix model for the two-dimensional black hole, Nucl. Phys. B 622 (2002) 141 [hep-th/0101011] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Hori and A. Kapustin, Duality of the fermionic 2D black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J.M. Maldacena, Statistical entropy of near extremal five-branes, Nucl. Phys. B 477 (1996) 168 [hep-th/9605016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Berkooz and M. Rozali, Near Hagedorn dynamics of NS five-branes, or a new universality class of coiled strings, JHEP 05 (2000) 040 [hep-th/0005047] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Harmark and N. Obers, Hagedorn behavior of little string theories, hep-th/0010169 [INSPIRE].

  29. Y. Nakayama, Y. Sugawara and H. Takayanagi, Boundary states for the rolling D-branes in NS5 background, JHEP 07 (2004) 020 [hep-th/0406173] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D.A. Sahakyan, Comments on D-brane dynamics near NS5-branes, JHEP 10 (2004) 008 [hep-th/0408070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. Y. Nakayama, S.-J. Rey and Y. Sugawara, D-brane propagation in two-dimensional black hole geometries, JHEP 09 (2005) 020 [hep-th/0507040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. Y. Sugawara, D-brane falling into 2D black-hole and closed string radiation, AIP Conf. Proc. 805 (2006) 374 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. Y. Nakayama, S.-J. Rey and Y. Sugawara, Unitarity meets channel-duality for rolling/decaying D-branes, JHEP 08 (2006) 014 [hep-th/0605013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Kutasov, D-brane dynamics near NS5-branes, hep-th/0405058 [INSPIRE].

  35. V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. 1. Boundary state and boundary two point function, hep-th/0001012 [INSPIRE].

  36. J. Teschner, Remarks on Liouville theory with boundary, hep-th/0009138 [INSPIRE].

  37. T. Eguchi and Y. Sugawara, Conifold type singularities, N = 2 Liouville and SL(2, R)/U(1) theories, JHEP 01 (2005) 027 [hep-th/0411041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Eguchi and Y. Sugawara, Modular bootstrap for boundary N = 2 Liouville theory, JHEP 01 (2004) 025 [hep-th/0311141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. W. Boucher, D. Friedan and A. Kent, Determinant formulae and unitarity for the N = 2 superconformal algebras in two-dimensions or exact results on string compactification, Phys. Lett. B 172 (1986) 316 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. V. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. B 186 (1987) 43 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. E. Kiritsis, Character formulae and the structure of the representations of the N = 1, N = 2 superconformal algebras, Int. J. Mod. Phys. A 3 (1988) 1871 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sugawara.

Additional information

ArXiv ePrint: 1208.3534

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, Y. Thermodynamics of superstring on near-extremal NS5 and effective Hagedorn behavior. J. High Energ. Phys. 2012, 159 (2012). https://doi.org/10.1007/JHEP10(2012)159

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)159

Keywords

Navigation