Skip to main content
Log in

Nonplanar integrability at two loops

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this article we compute the action of the two loop dilatation operator on restricted Schur polynomials that belong to the su(2) sector, in the displaced corners approximation. In this non-planar large N limit, operators that diagonalize the one loop dilatation operator are not corrected at two loops. The resulting spectrum of anomalous dimensions is related to a set of decoupled harmonic oscillators, indicating integrability in this sector of the theory at two loops. The anomalous dimensions are a non-trivial function of the ’t Hooft coupling, with a spectrum that is continuous and starting at zero at large N, but discreteat finite N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  5. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Kristjansen, Review of AdS/CFT Integrability, Chapter IV.1: Aspects of Non-Planarity, Lett. Math. Phys. 99 (2012) 349 [arXiv:1012.3997] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. K. Zoubos, Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and integrability III. Classical tunneling, JHEP 07 (2012) 044 [arXiv:1111.2349] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. O. Foda, N = 4 SYM structure constants as determinants, JHEP 03 (2012) 096 [arXiv:1111.4663] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. N. Gromov and P. Vieira, Quantum integrability for three-point functions, arXiv:1202.4103 [INSPIRE].

  14. I. Kostov, Classical limit of the three-point function of N = 4 supersymmetric Yang-Mills theory from integrability, Phys. Rev. Lett. 108 (2012) 261604 [arXiv:1203.6180] [INSPIRE].

    Article  ADS  Google Scholar 

  15. V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5(2002) 809[hep-th/0111222][INSPIRE].

    MathSciNet  Google Scholar 

  19. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].

    Article  ADS  Google Scholar 

  28. R. de Mello Koch, G. Mashile and N. Park, Emergent threebrane lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [INSPIRE].

    ADS  Google Scholar 

  29. V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].

    Google Scholar 

  30. W. Carlson, R. de Mello Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R. de Mello Koch, P. Diaz and H. Soltanpanahi, Non-planar anomalous dimensions in the sl(2) sector, Phys. Lett. B 713 (2012) 509 [arXiv:1111.6385] [INSPIRE].

    ADS  Google Scholar 

  32. R. de Mello Koch, B.A.E. Mohammed and S. Smith, Nonplanar integrability: beyond the SU(2) sector, Int. J. Mod. Phys. A 26 (2011) 4553 [arXiv:1106.2483] [INSPIRE].

    ADS  Google Scholar 

  33. R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant graviton oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].

    Article  Google Scholar 

  34. R. de Mello Koch, N. Ives and M. Stephanou, On subgroup adapted bases for representations of the symmetric group, J. Phys. A 45 (2012) 135204 [arXiv:1112.4316] [INSPIRE].

    ADS  Google Scholar 

  35. R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].

    Article  Google Scholar 

  36. R. de Mello Koch, G. Kemp and S. Smith, From large-N nonplanar anomalous dimensions to open spring theory, Phys. Lett. B 711 (2012) 398 [arXiv:1111.1058] [INSPIRE].

    ADS  Google Scholar 

  37. R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N ) super Yang-Mills theory, JHEP 11 (2004) 081 [hep-th/0410236] [INSPIRE].

    Article  Google Scholar 

  38. R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonswith strings attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].

    Article  Google Scholar 

  39. S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2 − D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. D. Berenstein, Shape and holography: studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. B. de Wit, M. Lüscher and H. Nicolai, The Supermembrane Is Unstable, Nucl. Phys. B 320 (1989) 135 [INSPIRE].

    Article  ADS  Google Scholar 

  42. D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills,JHEP 04(2002) 013 [hep-th/0202021][INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. A. Santambrogio and D. Zanon, Exact anomalous dimensions of N = 4 Yang-Mills operators with large R charge, Phys. Lett. B 545 (2002) 425 [hep-th/0206079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert de Mello Koch.

Additional information

ArXiv ePrint: 1206.0813

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Mello Koch, R., Kemp, G., Mohammed, B.A.E. et al. Nonplanar integrability at two loops. J. High Energ. Phys. 2012, 144 (2012). https://doi.org/10.1007/JHEP10(2012)144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)144

Keywords

Navigation