Skip to main content
Log in

The limit of N = (2, 2) superconformal minimal models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The limit of families of two-dimensional conformal field theories has recently attracted attention in the context of AdS/CFT dualities. In our work we analyse the limit of N = (2, 2) superconformal minimal models when the central charge approaches c = 3. The limiting theory is a non-rational N = (2, 2) superconformal theory, in which there is a continuum of chiral primary fields. We determine the spectrum of the theory, the three-point functions on the sphere, and the disc one-point functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Runkel and G. Watts, A Nonrational CFT with c = 1 as a limit of minimal models, JHEP 09 (2001) 006 [hep-th/0107118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Fredenhagen, Boundary conditions in Toda theories and minimal models, JHEP 02 (2011) 052 [arXiv:1012.0485] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Fredenhagen and D. Wellig, A Common limit of super Liouville theory and minimal models, JHEP 09 (2007) 098 [arXiv:0706.1650] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Roggenkamp and K. Wendland, Limits and degenerations of unitary conformal field theories, Commun. Math. Phys. 251 (2004) 589 [hep-th/0308143] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Y. Kazama and H. Suzuki, New N = 2 Superconformal Field Theories and Superstring Compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Zamolodchikov, Renormalization Group and Perturbation Theory Near Fixed Points in Two-Dimensional Field Theory, Sov. J. Nucl. Phys. 46 (1987) 1090 [INSPIRE].

    MathSciNet  Google Scholar 

  7. A. Ludwig and J.L. Cardy, Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems, Nucl. Phys. B 285 (1987) 687 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.L. Lukyanov, V.A. Fateev, Additional symmetries and exactly soluble models in two-dimensional conformal field theory, Soviet Scientific Reviews 15, part 2, Physics Reviews, Harwood Academic Publishers, Chur, Switzerland (1990).

  9. A. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. M. Cvetič and D. Kutasov, Topology change in string theory, Phys. Lett. B 240 (1990) 61 [INSPIRE].

    ADS  Google Scholar 

  11. W. Leaf-Herrmann, Perturbation theory near N = 2 superconformal fixed points in two-dimensional field theory, Nucl. Phys. B 348 (1991) 525 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011)066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  15. T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS 3, arXiv:1203.1939 [INSPIRE].

  17. J.G. Polchinski, String Theory : Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1998).

  18. R. Blumenhagen, Introduction to conformal field theory with applications to string theory, Lecture Notes in Physics 779, Springer, Berlin, Germany (2009).

  19. G. Mussardo, G. Sotkov and M. Stanishkov, N = 2 superconformal minimal models, Int. J. Mod. Phys. A 4 (1989) 1135 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. E.B. Kiritsis, The structure of N = 2 superconformally invariantminimaltheories: operator algebra and correlation functions, Phys. Rev. D 36 (1987) 3048 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. A. Zamolodchikov and V. Fateev, Operator Algebra and Correlation Functions in the Two-Dimensional Wess-Zumino SU(2) × SU(2) Chiral Model, Sov. J. Nucl. Phys. 43 (1986) 657 [INSPIRE].

    Google Scholar 

  22. V. Dotsenko, Solving the SU(2) conformal field theory with the Wakimoto free field representation, Nucl. Phys. B 358 (1991) 547 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. G. D’Appollonio and E. Kiritsis, String interactions in gravitational wave backgrounds, Nucl. Phys. B 674 (2003) 80 [hep-th/0305081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J.M. Maldacena, G.W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Fredenhagen and V. Schomerus, Brane dynamics in CFT backgrounds, hep-th/0104043 [INSPIRE].

  26. S. Fredenhagen and C. Restuccia, The geometry of the limit of N = 2 minimal models, arXiv:1208.6136 [INSPIRE].

  27. S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. M.R. Gaberdiel and P. Suchanek, Limits of Minimal Models and Continuous Orbifolds, JHEP 03 (2012) 104 [arXiv:1112.1708] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. V. Schomerus, Rolling tachyons from Liouville theory, JHEP 11 (2003) 043 [hep-th/0306026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Fredenhagen and V. Schomerus, Boundary Liouville theory at c = 1, JHEP 05 (2005) 025 [hep-th/0409256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Hosomichi, N = 2 Liouville theory with boundary, JHEP 12 (2006) 061 [hep-th/0408172] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Hori and A. Kapustin, Duality of the fermionic 2 − D black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Dijkgraaf, H.L. Verlinde, E.P. Verlinde, Notes on topological string theory and 2-D quantum gravity (1990), based on lectures given at Trieste Spring School (1990).

  35. G. Racah, Theory of Complex Spectra. II, Phys. Rev. 62 (1942) 438.

    Article  ADS  Google Scholar 

  36. D.A. Varsalovic, A.N. Moskalev and V.K. Chersonskij, Quantum theory of angular momentum, World Scientific, Singapore (1989).

    Google Scholar 

  37. E. Wigner, Group theory: And its application to the quantum mechanics of atomic spectra, Pure and Applied Physics 5, Academic Press, New York, U.S.A. (1959).

  38. K. Schulten and R. Gordon, Semiclassical approximations to 3j and 6j coefficients for quantum mechanical coupling of angular momenta, J. Math. Phys. 16 (1975) 1971 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. M.W. Reinsch and J.J. Morehead, Asymptotics of Clebsch-Gordan coefficients, J. Math. Phys. 40 (1999) 4782 [mathph9906007].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. G.E. Andrews, R. Askey, R. Roy, Special Functions, in Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, U.K. (1999).

  41. E. Barnes, The theory of the G-function, Quarterly Journal of Pure and Applied Mathematics 31 (1900) 264.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Fredenhagen.

Additional information

ArXiv ePrint: 1204.0446

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredenhagen, S., Restuccia, C. & Sun, R. The limit of N = (2, 2) superconformal minimal models. J. High Energ. Phys. 2012, 141 (2012). https://doi.org/10.1007/JHEP10(2012)141

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)141

Keywords

Navigation