Skip to main content
Log in

Constraints on a class of classical solutions in open string field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate boundary states for general string fields in the KBc subalgebra under some regularity conditions based on the construction by Kiermaier, Okawa, and Zwiebach. The resulting boundary states are always proportional to that for the perturbative vacuum |B〉. In this framework, the equation of motion implies that boundary states are independent of the auxiliary parameter s associated with the length of the boundary. By requiring the s-independence, we show that the boundary states for classical solutions in our class are restricted to ±|B〉 and 0. In particular, there exist no string fields which reproduce boundary states for multiple D-brane backgrounds. While we know that the boundary states |B〉 and 0 are reproduced by solutions for the perturbative vacuum and the tachyon vacuum, respectively, no solutions reproducing −|B〉 have been constructed. In this paper we also propose a candidate for such a solution, which may describe the ghost D-brane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. O.-K. Kwon, Marginally Deformed Rolling Tachyon around the Tachyon Vacuum in Open String Field Theory, Nucl. Phys. B 804 (2008) 1 [arXiv:0801.0573] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Hellerman and M. Schnabl, Light-like tachyon condensation in Open String Field Theory, arXiv:0803.1184 [INSPIRE].

  11. I. Kishimoto, Comments on gauge invariant overlaps for marginal solutions in open string field theory, Prog. Theor. Phys. 120 (2008) 875 [arXiv:0808.0355] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. N. Barnaby, D.J. Mulryne, N.J. Nunes and P. Robinson, Dynamics and Stability of Light-Like Tachyon Condensation, JHEP 03 (2009) 018 [arXiv:0811.0608] [INSPIRE].

    Article  ADS  Google Scholar 

  13. F. Beaujean and N. Moeller, Delays in Open String Field Theory, arXiv:0912.1232 [INSPIRE].

  14. M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Rastelli and B. Zwiebach, Solving Open String Field Theory with Special Projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. Y. Okawa, L. Rastelli and B. Zwiebach, Analytic Solutions for Tachyon Condensation with General Projectors, hep-th/0611110 [INSPIRE].

  23. T. Erler, Split String Formalism and the Closed String Vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: A General framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Tachyon Solution in Cubic Neveu-Schwarz String Field Theory, Theor. Math. Phys. 158 (2009) 320 [arXiv:0804.2017] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  31. I.Y. Aref’eva, R.V. Gorbachev, D.A. Grigoryev, P.N. Khromov, M.V. Maltsev and P. B. Medvedev, Pure Gauge Configurations and Tachyon Solutions to String Field Theories Equations of Motion, JHEP 05 (2009) 050 [arXiv:0901.4533] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. E.A. Arroyo, Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. T. Erler, Exotic Universal Solutions in Cubic Superstring Field Theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Bonora, C. Maccaferri and D. Tolla, Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Murata and M. Schnabl, On Multibrane Solutions in Open String Field Theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. L. Bonora, S. Giaccari and D. Tolla, The energy of the analytic lump solution in SFT, JHEP 08 (2011) 158 [Erratum ibid. 1204 (2012) 001] [arXiv:1105.5926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Erler and C. Maccaferri, Comments on Lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Hashimoto and N. Itzhaki, Observables of string field theory, JHEP 01 (2002) 028 [hep-th/0111092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Ghost structure and closed strings in vacuum string field theory, Adv. Theor. Math. Phys. 6 (2003) 403 [hep-th/0111129] [INSPIRE].

    MathSciNet  Google Scholar 

  43. I. Ellwood, The Closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Hata and T. Kojita, Winding Number in String Field Theory, JHEP 01 (2012) 088 [arXiv:1111.2389] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. T. Masuda, On the classical solution for the double-brane background in open string field theory, to appear.

  46. D. Takahashi, The boundary state for a class of analytic solutions in open string field theory, JHEP 11 (2011) 054 [arXiv:1110.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].

  48. M. Kudrna, C. Maccaferri and M. Schnabl, Boundary State from Ellwood Invariants, arXiv:1207.4785 [INSPIRE].

  49. T. Okuda and T. Takayanagi, Ghost D-branes, JHEP 03 (2006) 062 [hep-th/0601024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Kiermaier, A. Sen and B. Zwiebach, Linear b-Gauges for Open String Fields, JHEP 03 (2008) 050 [arXiv:0712.0627] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Kiermaier and B. Zwiebach, One-Loop Riemann Surfaces in Schnabl Gauge, JHEP 07 (2008) 063 [arXiv:0805.3701] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with Singular Gauge Transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. T. Erler and C. Maccaferri, The Phantom Term in Open String Field Theory, JHEP 06 (2012) 084 [arXiv:1201.5122] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Zeze, Regularization of identity based solution in string field theory, JHEP 10 (2010) 070 [arXiv:1008.1104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. E.A. Arroyo, Comments on regularization of identity based solutions in string field theory, JHEP 11 (2010) 135 [arXiv:1009.0198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. T. Erler, The Identity String Field and the Sliver Frame Level Expansion, arXiv:1208.6287 [INSPIRE].

  57. T. Erler, A simple analytic solution for tachyon condensation, Theor. Math. Phys. 163 (2010) 705 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Noumi.

Additional information

ArXiv ePrint: 1207.6220

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, T., Noumi, T. & Takahashi, D. Constraints on a class of classical solutions in open string field theory. J. High Energ. Phys. 2012, 113 (2012). https://doi.org/10.1007/JHEP10(2012)113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)113

Keywords

Navigation