Skip to main content
Log in

Top quark forward-backward asymmetry and W ′-boson with general couplings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The measured forward-backward asymmetry in top pair events at the Fermilab Tevatron collider deviates significantly from the standard model expectation. Several models have been proposed to describe the observed asymmetry which grows with the rapidity difference of the top pairs and also with the \( t\overline{t} \) invariant mass. The presence of a heavy charged gauge boson W with the coupling W td (left-handed, right-handed, and a mixture of left and right-handed couplings) could generate the desired top forward-backward asymmetry keeping the top pair cross section consistent with the standard model prediction. Such W -boson makes contribution to the electric dipole moment of the neutron through contribution to the d-quark electric dipole moment, recently measured charge asymmetry (A C ) by the LHC experiments, and the total cross section of top pair at the LHC and Tevatron. We show that the upper bounds on neutron and top electric dipole moments disfavour any W with a mass below 240 GeV which could explain the Tevatron forward-backward asymmetry. It is shown that the charge asymmetry provides an allowed region in the parameters space with no overlap with the allowed region where the asymmetry could be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [INSPIRE].

    ADS  Google Scholar 

  2. M. Beneke, I. Efthymiopoulos, M.L. Mangano, J. Womersley, A. Ahmadov, et al., Top quark physics, hep-ph/0003033 [INSPIRE].

  3. W. Bernreuther, P. Gonzalez and M. Wiebusch, The top quark decay vertex in standard model extensions, Eur. Phys. J. C 60 (2009) 197 [arXiv:0812.1643] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].

    ADS  Google Scholar 

  5. D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].

    ADS  Google Scholar 

  6. P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev. D 78 (2008) 094018 [arXiv:0809.3354] [INSPIRE].

    ADS  Google Scholar 

  7. W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].

    Article  ADS  Google Scholar 

  8. W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].

    ADS  Google Scholar 

  9. J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].

    Article  ADS  Google Scholar 

  10. CDF colaboration, Study of the top quark productionasimmetry and its mass and rapidity dependence in the full run II Tevatron dataset, CDF Note 10807 (2012).

  11. P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [INSPIRE].

    ADS  Google Scholar 

  12. J. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011) 228 [arXiv:1107.2120] [INSPIRE].

    ADS  Google Scholar 

  13. G. Marques Tavares and M. Schmaltz, Explaining the \( t\overline{t} \) asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].

    ADS  Google Scholar 

  14. S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].

    ADS  Google Scholar 

  15. K. Blum, Y. Hochberg and Y. Nir, Scalar-mediated \( t\overline{t} \) forward-backward asymmetry, JHEP 10 (2011) 124 [arXiv:1107.4350] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Shu, T.M. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [INSPIRE].

    ADS  Google Scholar 

  17. R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].

    ADS  Google Scholar 

  19. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in tt production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [INSPIRE].

    ADS  Google Scholar 

  20. B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [INSPIRE].

    ADS  Google Scholar 

  21. B. Grinstein, C.W. Murphy, D. Pirtskhalava and P. Uttayarat, Massive spin-2 states as the origin of the top quark forward-backward asymmetry, JHEP 08 (2012) 073 [arXiv:1203.2183] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].

    ADS  Google Scholar 

  23. ATLAS collaboration, G. Aad et al., Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) using the ATLAS detector, Phys. Lett. B 705 (2011) 28 [arXiv:1108.1316] [INSPIRE].

    ADS  Google Scholar 

  24. K. Yan, J. Wang, D.Y. Shao and C.S. Li, Next-to-leading order QCD effect of W on top quark forward-backward asymmetry, Phys. Rev. D 85 (2012) 034020 [arXiv:1110.6684] [INSPIRE].

    ADS  Google Scholar 

  25. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  26. D0 collaboration, V.M. Abazov et al., Measurement of the \( t\overline{t} \) production cross section using dilepton events in \( p\overline{p} \) collisions, Phys. Lett. B 704 (2011) 403 [arXiv:1105.5384] [INSPIRE].

    ADS  Google Scholar 

  27. CMS collaboration, Combination of top pair production cross section measurements, PAS-TOP-11-024.

  28. ATLAS collaboration, G. Aad et al., Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=7\;TeV \) using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2039 [arXiv:1203.4211] [INSPIRE].

    ADS  Google Scholar 

  29. CMS collaboration, S. Chatrchyan et al., Measurement of the charge asymmetry in top-quark pair production in proton-proton collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 709 (2012) 28 [arXiv:1112.5100] [INSPIRE].

    ADS  Google Scholar 

  30. CMS collaboration, Differential measurements of the charge asymmetry in top quark pair production, PAS-TOP-11-030.

  31. J. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\overline{t} \) production: LHC versus Tevatron, Phys. Rev. D 84 (2011) 115013 [arXiv:1105.4606] [INSPIRE].

    ADS  Google Scholar 

  32. J. Aguilar-Saavedra and A. Juste, Collider-independent \( t\overline{t} \) forward-backward asymmetries, arXiv:1205.1898 [INSPIRE].

  33. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. T. Fukuyama, Searching for new physics beyond the standard model in electric dipole moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].

    ADS  Google Scholar 

  35. A. Czarnecki and B. Krause, Neutron electric dipole moment in the standard model: valence quark contributions, Phys. Rev. Lett. 78 (1997) 4339 [hep-ph/9704355] [INSPIRE].

    Article  ADS  Google Scholar 

  36. I. Altarev, Y. Borisov, N. Borovikova, S. Ivanov, E. Kolomensky, et al., New measurement of the electric dipole moment of the neutron, Phys. Lett. B 276 (1992) 242 [INSPIRE].

    ADS  Google Scholar 

  37. I. Altarev, Y. Borisov, N. Borovikova, A. Egorov, S. Ivanov, et al., Search for the neutron electric dipole moment, Phys. Atom. Nucl. 59 (1996) 1152 [INSPIRE].

    ADS  Google Scholar 

  38. nEDM Experiment collaboration, SNS neutron EDM experiment, http://p25ext.lanl.gov/edm/edm.html.

  39. J.L. Hewett and T.G. Rizzo, Using Bsγ to probe top quark couplings, Phys. Rev. D 49 (1994) 319 [hep-ph/9305223] [INSPIRE].

    ADS  Google Scholar 

  40. J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].

    ADS  Google Scholar 

  41. S. Fajfer, J.F. Kamenik and B. Melic, Discerning new physics in top-antitop production using top spin observables at hadron colliders, JHEP 08 (2012) 114 [arXiv:1205.0264] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Khatibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayazi, S.Y., Khatibi, S. & Najafabadi, M.M. Top quark forward-backward asymmetry and W ′-boson with general couplings. J. High Energ. Phys. 2012, 103 (2012). https://doi.org/10.1007/JHEP10(2012)103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)103

Keywords

Navigation