Skip to main content
Log in

Holographic renormalization for asymptotically Lifshitz spacetimes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A variational formulation is given for a theory of gravity coupled to a massive vector in four dimensions, with Asymptotically Lifshitz boundary conditions on the fields. For theories with critical exponent z = 2 we obtain a well-defined variational principle by explicitly constructing two actions with local boundary counterterms. As part of our analysis we obtain solutions of these theories on a neighborhood of spatial infinity, study the asymptotic symmetries, and consider different definitions of the boundary stress tensor and associated charges. A constraint on the boundary data for the fields figures prominently in one of our formulations, and in that case the only suitable definition of the boundary stress tensor is due to Hollands, Ishibashi, and Marolf. Their definition naturally emerges from our requirement of finiteness of the action under Hamilton-Jacobi variations of the fields. A second, more general variational principle also allows the Brown-York definition of a boundary stress tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. D.S. Rokhsar and S.A. Kivelson, Superconductivity and the quantum hard-core dimer gas, Phys. Rev. Lett. 61 (1988) 2376 [ inSPIRE].

    Article  ADS  Google Scholar 

  3. E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals Phys. 310 (2004) 493 [cond-mat/0311466] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Vishwanath, L. Balents and T. Senthil, Quantum criticality and deconfinement in phase transitions between valence bond solids, Phys. Rev. B 69 (2004) 224416.

    ADS  Google Scholar 

  5. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [ inSPIRE].

    Article  ADS  Google Scholar 

  8. U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [ inSPIRE].

    Article  ADS  Google Scholar 

  12. M. Dehghani and R.B. Mann, Lovelock-Lifshitz black holes, JHEP 07 (2010) 019 [arXiv:1004.4397] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Dehghani and R.B. Mann, Thermodynamics of Lovelock-Lifshitz black branes, Phys. Rev. D 82 (2010) 064019 [arXiv:1006.3510] [ inSPIRE].

    ADS  Google Scholar 

  14. W. Brenna, M. Dehghani and R. Mann, Quasi-topological Lifshitz black holes, Phys. Rev. D 84 (2011) 024012 [arXiv:1101.3476] [ inSPIRE].

    ADS  Google Scholar 

  15. E. Brynjolfsson, U. Danielsson, L. Thorlacius and T. Zingg, Black hole thermodynamics and heavy fermion metals, JHEP 08 (2010) 027 [arXiv:1003.5361] [ inSPIRE].

    Article  ADS  Google Scholar 

  16. M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [ inSPIRE].

    ADS  Google Scholar 

  17. R. Mann and R. Pourhasan, Gauss-Bonnet black holes and heavy fermion metals, JHEP 09 (2011) 062 [arXiv:1105.0389] [ inSPIRE].

    Article  ADS  Google Scholar 

  18. P. Koroteev and M. Libanov, On existence of self-tuning solutions in static braneworlds without singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. J.W. York, Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [ inSPIRE].

    Article  ADS  Google Scholar 

  20. G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. R.B. Mann, D. Marolf and A. Virmani, Covariant counterterms and conserved charges in asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 6357 [gr-qc/0607041] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R.B. Mann, D. Marolf, R. McNees and A. Virmani, On the stress tensor for asymptotically flat gravity, Class. Quant. Grav. 25 (2008) 225019 [arXiv:0804.2079] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Compere, F. Dehouck and A. Virmani, On asymptotic flatness and Lorentz charges, Class. Quant. Grav. 28 (2011) 145007 [arXiv:1103.4078] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Virmani, Asymptotic flatness, Taub-NUT and variational principle, Phys. Rev. D 84 (2011) 064034 [arXiv:1106.4372] [ inSPIRE].

    ADS  Google Scholar 

  27. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [ inSPIRE].

    Article  Google Scholar 

  30. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [ inSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. R.B. Mann and R. McNees, Boundary terms unbound! holographic renormalization of asymptotically linear dilaton gravity, Class. Quant. Grav. 27 (2010) 065015 [arXiv:0905.3848] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved charges in asymptotically AdS-spacetimes, Class. Quant. Grav. 22 (2005) 2881 [hep-th/0503045] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. S. Hollands, A. Ishibashi and D. Marolf, Counter-term charges generate bulk symmetries, Phys. Rev. D 72 (2005) 104025 [hep-th/0503105] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. M.C. Cheng, S.A. Hartnoll and C.A. Keeler, Deformations of Lifshitz holography, JHEP 03 (2010) 062 [arXiv:0912.2784] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. J.M. Martín-García, xAct: efficient tensor computer algebra, http://www.xact.es/, (2011).

  39. S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [ inSPIRE].

    Article  ADS  Google Scholar 

  40. M. Baggio, J. de Boer and K. Holsheimer, Hamilton-Jacobi renormalization for Lifshitz spacetime, arXiv:1107.5562 [ inSPIRE].

  41. I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert McNees.

Additional information

ArXiv ePrint: 1107.5792

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, R.B., McNees, R. Holographic renormalization for asymptotically Lifshitz spacetimes. J. High Energ. Phys. 2011, 129 (2011). https://doi.org/10.1007/JHEP10(2011)129

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)129

Keywords

Navigation