Skip to main content
Log in

Anomalous dimensions of non-chiral operators from AdS/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Non-chiral operators with positive anomalous dimensions can have interesting applications to supersymmetric model building. Motivated by this, we develop a new method for obtaining the anomalous dimensions of non-chiral double-trace operators in \( \mathcal{N} = 1 \) superconformal field theories (SCFTs) with weakly-coupled AdS duals. Via the Hamiltonian formulation ofAdS/CFT, we show how to directly compute the anomalous dimension as a bound state energy in the gravity dual. This simplifies previous approaches based on the four-point function and the OPE. We apply our method to a class of effective AdS5 supergravity models, and we find that the binding energy can have either sign. If such models can be UV completed, they will provide the first calculable examples of SCFTs with positive anomalous dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [ inSPIRE].

    Article  ADS  Google Scholar 

  5. M. Dine, P. Fox, E. Gorbatov, Y. Shadmi, Y. Shirman, et al., Visible effects of the hidden sector, Phys. Rev. D 70 (2004) 045023 [hep-ph/0405159] [ inSPIRE].

    ADS  Google Scholar 

  6. A.G. Cohen, T.S. Roy and M. Schmaltz, Hidden sector renormalization of MSSM scalar masses, JHEP 02 (2007) 027 [hep-ph/0612100] [ inSPIRE].

    Article  ADS  Google Scholar 

  7. T.S. Roy and M. Schmaltz, Hidden solution to the mu/Bmu problem in gauge mediation, Phys. Rev. D 77 (2008) 095008 [arXiv:0708.3593] [ inSPIRE].

    ADS  Google Scholar 

  8. G. Perez, T.S. Roy and M. Schmaltz, Phenomenology of SUSY with scalar sequestering, Phys. Rev. D 79 (2009) 095016 [arXiv:0811.3206] [ inSPIRE].

    ADS  Google Scholar 

  9. D. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [ inSPIRE].

    ADS  Google Scholar 

  10. Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [ inSPIRE].

    Article  ADS  Google Scholar 

  11. M. Schmaltz and W. Skiba, Minimal gaugino mediation, Phys. Rev. D 62 (2000) 095005 [hep-ph/0001172] [ inSPIRE].

    ADS  Google Scholar 

  12. T.T. Dumitrescu, Z. Komargodski, N. Seiberg and D. Shih, General Messenger Gauge Mediation, JHEP 05 (2010) 096 [arXiv:1003.2661] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [ inSPIRE].

    Article  MathSciNet  Google Scholar 

  15. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [ inSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  16. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. I. Heemskerk and J. Sully, More Holography from Conformal Field Theory, JHEP 09 (2010) 099 [arXiv:1006.0976] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The Operator product expansion of N = 4 SYM and the 4 point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett. B 452 (1999) 61 [hep-th/9808006] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4) in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. F. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, et al., General matter coupled N = 2 supergravity, Nucl. Phys. B 476 (1996) 397 [hep-th/9603004] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A. Ceresole, G. Dall’Agata, R. Kallosh and A. Van Proeyen, Hypermultiplets, domain walls and supersymmetric attractors, Phys. Rev. D 64 (2001) 104006 [hep-th/0104056] [ inSPIRE].

    ADS  Google Scholar 

  27. B. de Wit, M. Roček and S. Vandoren, Gauging isometries on hyperKähler cones and quaternion Kähler manifolds, Phys. Lett. B 511 (2001) 302 [hep-th/0104215] [ inSPIRE].

    ADS  Google Scholar 

  28. Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : Predictions on N =1 SCFT ’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : Predictions on N =1 SCFT ’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9907216] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. F. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions, Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. M. Schmaltz and R. Sundrum, Conformal Sequestering Simplified, JHEP 11 (2006) 011 [hep-th/0608051] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Barnes, E. Gorbatov, K.A. Intriligator, M. Sudano and J. Wright, The Exact superconformal R-symmetry minimizes tau(RR), Nucl. Phys. B 730 (2005) 210 [hep-th/0507137] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. F. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. F. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT , JHEP 01 (2008) 019 [hep-th/0602106] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d / AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. E. D’Hoker and D.Z. Freedman, Gauge boson exchange in AdS d+1, Nucl. Phys. B 544 (1999) 612 [hep-th/9809179] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton and gauge boson propagators in AdS d+1, Nucl. Phys. B 562 (1999) 330 [hep-th/9902042] [ inSPIRE].

    Article  MathSciNet  Google Scholar 

  43. E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z-integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [ inSPIRE].

    Article  MathSciNet  Google Scholar 

  44. S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4 (1989) 2475 [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [ inSPIRE].

    ADS  Google Scholar 

  47. J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. K. Skenderis, M. Taylor and D. Tsimpis, A Consistent truncation of IIB supergravity on manifolds admitting a Sasaki-Einstein structure, JHEP 06 (2010) 025 [arXiv:1003.5657] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. Y.-v. Gennip, Mathematical and physical aspects of the quaternion-Kähler manifold that arises in type IIA string compactification on rigid Calabi-Yau manifolds,” MSc Thesis, http://www1.phys.uu.nl/wwwitf/Teaching/ouder/04YvanGennip.pdf.

  50. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Liam Fitzpatrick or David Shih.

Additional information

ArXiv ePrint: 1104.5013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzpatrick, A.L., Shih, D. Anomalous dimensions of non-chiral operators from AdS/CFT. J. High Energ. Phys. 2011, 113 (2011). https://doi.org/10.1007/JHEP10(2011)113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)113

Keywords

Navigation