Skip to main content
Log in

Measuring invisible particle masses using a single short decay chain

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the mass measurement at hadron colliders for a decay chain of two steps, which ends with a missing particle. Such a topology appears as a subprocess of signal events of many new physics models which contain a dark matter candidate. From the two visible particles coming from the decay chain, only one invariant mass combination can be formed and hence it is naïvely expected that the masses of the three invisible particles in the decay chain cannot be determined from a single end point of the invariant mass distribution. We show that the event distribution in the log(E 1T /E 2T ) vs. invariant mass-squared plane, where E 1T , E 2T are the transverse energies of the two visible particles, contains the information of all three invisible particle masses and allows them to be extracted individually. The experimental smearing and combinatorial issues pose challenges to the mass measurements. However, in many cases the three invisible particle masses in the decay chain can be determined with reasonable accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [SPIRES].

    ADS  Google Scholar 

  2. G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575 [SPIRES].

    ADS  Google Scholar 

  3. S. Dimopoulos, S. Raby and F. Wilczek, Proton Decay in Supersymmetric Models, Phys. Lett. B 112 (1982) 133 [SPIRES].

    ADS  Google Scholar 

  4. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].

    Article  ADS  Google Scholar 

  5. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].

    ADS  Google Scholar 

  6. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [SPIRES].

    ADS  Google Scholar 

  7. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [SPIRES].

    ADS  Google Scholar 

  8. H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].

    Article  ADS  Google Scholar 

  9. H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].

    Article  ADS  Google Scholar 

  11. A.J. Barr and C.G. Lester, A Review of the Mass Measurement Techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [SPIRES].

    ADS  Google Scholar 

  12. Y. Bai and H.-C. Cheng, Identifying Dark Matter Event Topologies at the LHC, JHEP 06 (2011) 021 [arXiv:1012.1863] [SPIRES].

    Article  ADS  Google Scholar 

  13. F.E. Paige, Determining SUSY particle masses at LHC, hep-ph/9609373 [SPIRES].

  14. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].

    ADS  Google Scholar 

  15. C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [SPIRES].

    ADS  Google Scholar 

  16. A. Barr, C. Lester and P. Stephens, m T2 : The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [SPIRES].

    ADS  Google Scholar 

  17. H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and M T2, JHEP 12 (2008) 063 [arXiv:0810.5178] [SPIRES].

    Article  ADS  Google Scholar 

  18. H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella and B. McElrath, Mass Determination in SUSY-like Events with Missing Energy, JHEP 12 (2007) 076 [arXiv:0707.0030] [SPIRES].

    Article  ADS  Google Scholar 

  19. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino Stransverse Mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].

    Article  ADS  Google Scholar 

  20. A.J. Barr, B. Gripaios and C.G. Lester, Weighing Wimps with Kinks at Colliders: Invisible Particle Mass Measurements from Endpoints, JHEP 02 (2008) 014 [arXiv:0711.4008] [SPIRES].

    Article  ADS  Google Scholar 

  21. W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP 02 (2008) 035 [arXiv:0711.4526] [SPIRES].

    Article  ADS  Google Scholar 

  22. G.G. Ross and M. Serna, Mass Determination of New States at Hadron Colliders, Phys. Lett. B 665 (2008) 212 [arXiv:0712.0943] [SPIRES].

    ADS  Google Scholar 

  23. A.J. Barr, G.G. Ross and M. Serna, The Precision Determination of Invisible-Particle Masses at the LHC, Phys. Rev. D 78 (2008) 056006 [arXiv:0806.3224] [SPIRES].

    ADS  Google Scholar 

  24. H.-C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han and B. McElrath, Accurate Mass Determinations in Decay Chains with Missing Energy, Phys. Rev. Lett. 100 (2008) 252001 [arXiv:0802.4290] [SPIRES].

    Article  ADS  Google Scholar 

  25. H.-C. Cheng, J.F. Gunion, Z. Han and B. McElrath, Accurate Mass Determinations in Decay Chains with Missing Energy: II, Phys. Rev. D 80 (2009) 035020 [arXiv:0905.1344] [SPIRES].

    ADS  Google Scholar 

  26. M.M. Nojiri, Y. Shimizu, S. Okada and K. Kawagoe, Inclusive transverse mass analysis for squark and gluino mass determination, JHEP 06 (2008) 035 [arXiv:0802.2412] [SPIRES].

    Article  ADS  Google Scholar 

  27. M.M. Nojiri, K. Sakurai, Y. Shimizu and M. Takeuchi, Handling jets + missing E T channel using inclusive M T2, JHEP 10 (2008) 100 [arXiv:0808.1094] [SPIRES].

    Article  ADS  Google Scholar 

  28. M. Burns, K. Kong, K.T. Matchev and M. Park, Using Subsystem M T2 for Complete Mass Determinations in Decay Chains with Missing Energy at Hadron Colliders, JHEP 03 (2009) 143 [arXiv:0810.5576] [SPIRES].

    Article  ADS  Google Scholar 

  29. Y. Bai and Z. Han, Measuring the Dark Force at the LHC, Phys. Rev. Lett. 103 (2009) 051801 [arXiv:0902.0006] [SPIRES].

    Article  ADS  Google Scholar 

  30. P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable M T2, Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [SPIRES].

    Article  ADS  Google Scholar 

  31. M.M. Nojiri, K. Sakurai and B.R. Webber, Reconstructing particle masses from pairs of decay chains, JHEP 06 (2010) 069 [arXiv:1005.2532] [SPIRES].

    Article  ADS  Google Scholar 

  32. A.J. Barr, B. Gripaios and C.G. Lester, Transverse masses and kinematic constraints: from the boundary to the crease, JHEP 11 (2009) 096 [arXiv:0908.3779] [SPIRES].

    Article  ADS  Google Scholar 

  33. P. Konar, K. Kong, K.T. Matchev and M. Park, Dark Matter Particle Spectroscopy at the LHC: Generalizing M T2 to Asymmetric Event Topologies, JHEP 04 (2010) 086 [arXiv:0911.4126] [SPIRES].

    Article  ADS  Google Scholar 

  34. B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].

    Article  ADS  Google Scholar 

  35. K. Kawagoe, M.M. Nojiri and G. Polesello, A new SUSY mass reconstruction method at the CERN LHC, Phys. Rev. D 71 (2005) 035008 [hep-ph/0410160] [SPIRES].

    ADS  Google Scholar 

  36. B.K. Gjelsten, D.J. Miller, 2 and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP 12 (2004) 003 [hep-ph/0410303] [SPIRES].

  37. B.K. Gjelsten, D.J. Miller, 2 and P. Osland, Measurement of the gluino mass via cascade decays for SPS 1a, JHEP 06 (2005) 015 [hep-ph/0501033] [SPIRES].

  38. D.J. Miller, 2, P. Osland and A.R. Raklev, Invariant mass distributions in cascade decays, JHEP 03 (2006) 034 [hep-ph/0510356] [SPIRES].

  39. M. Burns, K.T. Matchev and M. Park, Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy, JHEP 05 (2009) 094 [arXiv:0903.4371] [SPIRES].

    Article  ADS  Google Scholar 

  40. K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precise reconstruction of sparticle masses without ambiguities, JHEP 08 (2009) 104 [arXiv:0906.2417] [SPIRES].

    Article  ADS  Google Scholar 

  41. A.J. Barr, Using lepton charge asymmetry to investigate the spin of supersymmetric particles at the LHC, Phys. Lett. B 596 (2004) 205 [hep-ph/0405052] [SPIRES].

    ADS  Google Scholar 

  42. J.M. Smillie and B.R. Webber, Distinguishing Spins in Supersymmetric and Universal Extra Dimension Models at the Large Hadron Collider, JHEP 10 (2005) 069 [hep-ph/0507170] [SPIRES].

    Article  ADS  Google Scholar 

  43. A. Datta, K. Kong and K.T. Matchev, Discrimination of supersymmetry and universal extra dimensions at hadron colliders, Phys. Rev. D 72 (2005) 096006 [hep-ph/0509246] [SPIRES].

    ADS  Google Scholar 

  44. A. Alves, O. Eboli and T. Plehn, It’s a gluino, Phys. Rev. D 74 (2006) 095010 [hep-ph/0605067] [SPIRES].

    ADS  Google Scholar 

  45. C. Athanasiou, C.G. Lester, J.M. Smillie and B.R. Webber, Distinguishing spins in decay chains at the Large Hadron Collider, JHEP 08 (2006) 055 [hep-ph/0605286] [SPIRES].

    Article  ADS  Google Scholar 

  46. L.-T. Wang and I. Yavin, Spin Measurements in Cascade Decays at the LHC, JHEP 04 (2007) 032 [hep-ph/0605296] [SPIRES].

    Article  ADS  Google Scholar 

  47. J.M. Smillie, Spin Correlations in Decay Chains Involving W Bosons, Eur. Phys. J. C 51 (2007) 933 [hep-ph/0609296] [SPIRES].

    Article  ADS  Google Scholar 

  48. C. Kilic, L.-T. Wang and I. Yavin, On the Existence of Angular Correlations in Decays with Heavy Matter Partners, JHEP 05 (2007) 052 [hep-ph/0703085] [SPIRES].

    Article  ADS  Google Scholar 

  49. C. Csáki, J. Heinonen and M. Perelstein, Testing Gluino Spin with Three-Body Decays, JHEP 10 (2007) 107 [arXiv:0707.0014] [SPIRES].

    Article  ADS  Google Scholar 

  50. M. Burns, K. Kong, K.T. Matchev and M. Park, A General Method for Model-Independent Measurements of Particle Spins, Couplings and Mixing Angles in Cascade Decays with Missing Energy at Hadron Colliders, JHEP 10 (2008) 081 [arXiv:0808.2472] [SPIRES].

    Article  ADS  Google Scholar 

  51. O. Gedalia, S.J. Lee and G. Perez, Spin Determination via Third Generation Cascade Decays, Phys. Rev. D 80 (2009) 035012 [arXiv:0901.4438] [SPIRES].

    ADS  Google Scholar 

  52. W. Ehrenfeld, A. Freitas, A. Landwehr and D. Wyler, Distinguishing spins in decay chains with photons at the Large Hadron Collider, JHEP 07 (2009) 056 [arXiv:0904.1293] [SPIRES].

    Article  ADS  Google Scholar 

  53. H.-C. Cheng, Z. Han, I.-W. Kim and L.-T. Wang, Missing Momentum Reconstruction and Spin Measurements at Hadron Colliders, JHEP 11 (2010) 122 [arXiv:1008.0405] [SPIRES].

    Article  ADS  Google Scholar 

  54. I.-W. Kim, Algebraic Singularity Method for Mass Measurement with Missing Energy, Phys. Rev. Lett. 104 (2010) 081601 [arXiv:0910.1149] [SPIRES].

    Article  ADS  Google Scholar 

  55. M.M. Nojiri, D. Toya and T. Kobayashi, Lepton Energy Asymmetry and Precision SUSY study at Hadron Colliders, Phys. Rev. D 62 (2000) 075009 [hep-ph/0001267] [SPIRES].

    ADS  Google Scholar 

  56. http://cmsdoc.cern.ch/cms/PRS/susybsm/msugra_testpts/msugra_testpts.html.

  57. M. Battaglia et al., Updated post-WMAP benchmarks for supersymmetry, Eur. Phys. J. C 33 (2004) 273 [hep-ph/0306219] [SPIRES].

    Article  ADS  Google Scholar 

  58. ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [SPIRES].

    ADS  Google Scholar 

  59. CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].

    ADS  Google Scholar 

  60. CMS collaboration, S. Chatrchyan et al., Inclusive search for squarks and gluinos in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1107.1279 [SPIRES].

  61. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  62. F. Ragusa and L. Rolandi, Tracking at LHC, New J. Phys. 9 (2007) 336.

    Article  ADS  Google Scholar 

  63. CMS collaboration, G.L. Bayatian et al., CMS physics: technical design report, CERN-LHCC-2006-001, CMS-TDR-008-1 (2006) [SPIRES].

  64. E. Meschi, T. Monteiro, C. Seez and P. Vikas, Electron reconstruction in the CMS electromagnetic calorimeter, CMS-NOTE-2001-034 [SPIRES].

  65. D. Krohn, L. Randall and L.-T. Wang, On the Feasibility and Utility of ISR Tagging, arXiv:1101.0810 [SPIRES].

  66. J. Gallicchio and M.D. Schwartz, Quark and Gluon Tagging at the LHC, arXiv:1106.3076 [SPIRES].

  67. CDF collaboration, T. Aaltonen et al., Model-Independent and Quasi-Model-Independent Search for New Physics at CDF, Phys. Rev. D 78 (2008) 012002 [arXiv:0712.1311] [SPIRES].

    ADS  Google Scholar 

  68. D. Alves et al., Simplified Models for LHC New Physics Searches, arXiv:1105.2838 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Chia Cheng.

Additional information

ArXiv ePrint: 1109.3471

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HC., Gu, J. Measuring invisible particle masses using a single short decay chain. J. High Energ. Phys. 2011, 94 (2011). https://doi.org/10.1007/JHEP10(2011)094

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)094

Keywords

Navigation