Skip to main content
Log in

Phenomenology of SUSY SU(5) with type I+III seesaw

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a supersymmetric SU(5) model where two neutrino masses are obtained via a mixed type I+ III seesaw mechanism induced by the component fields of a single SU(5) adjoint. We have analyzed the phenomenology of the model paying particular attention to flavour violating processes and dark matter relic density, assuming universal boundary conditions. We have found that, for a seesaw scale larger than 1012÷13 GeV, BR(μeγ) is in the reach of the MEG experiment in sizable regions of the parameter space. On the other side, current bounds on it force BR(τ→μγ) to be well below the reach of forthcoming experiments, rendering thus the model disprovable if a positive signal is found. The same bounds still allow for a sizable positive contribution to ϵ K , while the CP violation in the B s mixing turns out to be too small to account for the di-muon anomaly reported by the D0 collaboration. Finally, the regions where the neutralino relic density is within the WMAP bounds can be strongly modified with respect to the constrained MSSM case. In particular, a peculiar coannihilation region, bounded from above, can be realized, which allows us to put an upper bound on the dark matter mass for certain set-ups of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  2. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D. Freedman eds., North-Holland, Amsterdam The Netherlands (1979), pg. 315 [SPIRES].

  3. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK Report No. 79-18, Tsukuba Japan (1979), pg. 95 [SPIRES].

  4. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  5. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].

    ADS  Google Scholar 

  6. J. Schechter and J.W.F. Valle, Neutrino oscillation thought experiment, Phys. Rev. D 23 (1981) 1666 [SPIRES].

    ADS  Google Scholar 

  7. C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [SPIRES].

    Article  ADS  Google Scholar 

  8. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  9. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  10. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  11. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [SPIRES].

    Article  ADS  Google Scholar 

  12. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  13. P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/0702287] [SPIRES].

    ADS  Google Scholar 

  14. P. Fileviez Perez, Supersymmetric adjoint SU(5), Phys. Rev. D 76 (2007) 071701 [arXiv:0705.3589] [SPIRES].

    ADS  Google Scholar 

  15. P. Fileviez Perez, H. Iminniyaz, G. Rodrigo and S. Spinner, Gauge mediated SUSY breaking via seesaw, Phys. Rev. D 81 (2010) 095013 [arXiv:0911.1360] [SPIRES].

    ADS  Google Scholar 

  16. I.K. Cooper, S.F. King and C. Luhn, SUSY SU(5) with singlet plus adjoint matter and A 4 family symmetry, Phys. Lett. B 690 (2010) 396 [arXiv:1004.3243] [SPIRES].

    ADS  Google Scholar 

  17. F. Borzumati and T. Yamashita, Minimal supersymmetric SU(5) model with nonrenormalizable operators: seesaw mechanism and violation of flavour and CP, arXiv:0903.2793 [SPIRES].

  18. H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Rossi, Supersymmetric seesaw without singlet neutrinos: neutrino masses and lepton-flavour violation, Phys. Rev. D 66 (2002) 075003 [hep-ph/0207006] [SPIRES].

    ADS  Google Scholar 

  20. B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].

    Article  ADS  Google Scholar 

  21. B. Bajc, M. Nemevsek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [SPIRES].

    ADS  Google Scholar 

  22. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, μeγ and τ→ℓγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [SPIRES].

    ADS  Google Scholar 

  23. J.F. Kamenik and M. Nemevsek, Lepton flavor violation in type-I + III seesaw, JHEP 11 (2009) 023 [arXiv:0908.3451] [SPIRES].

    Article  ADS  Google Scholar 

  24. J.R. Ellis and M.K. Gaillard, Fermion masses and Higgs representations in SU(5), Phys. Lett. B 88 (1979) 315 [SPIRES].

    ADS  Google Scholar 

  25. H. Georgi and C. J arlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

  26. A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [SPIRES].

    ADS  Google Scholar 

  27. A. Ibarra, Reconstructing the two right-handed neutrino model, JHEP 01 (2006) 064 [hep-ph/0511136] [SPIRES].

    Article  ADS  Google Scholar 

  28. W.-l. Guo, Z.-Z. Xing and S. Zhou, Neutrino masses, lepton flavor mixing and leptogenesis in the minimal seesaw model, Int. J. Mod. Phys. E 16 (2007) 1 [hep-ph/0612033] [SPIRES].

    ADS  Google Scholar 

  29. M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [SPIRES].

    Article  ADS  Google Scholar 

  30. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  31. I. Masina and C.A. Savoy, Sleptonarium (constraints on the CP and flavour pattern of scalar lepton masses), Nucl. Phys. B 661 (2003) 365 [hep-ph/0211283] [SPIRES].

    ADS  Google Scholar 

  32. P. Paradisi, Constraints on SUSY lepton flavour violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [SPIRES].

    Article  ADS  Google Scholar 

  33. F.R. Joaquim, Running effects on neutrino parameters and i →ℓ j γ predictions in the triplet-extended MSSM, JHEP 06 (2010) 079 [arXiv:0912.3427] [SPIRES].

    Article  ADS  Google Scholar 

  34. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [SPIRES].

    Article  ADS  Google Scholar 

  35. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].

    ADS  Google Scholar 

  36. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [SPIRES].

    ADS  Google Scholar 

  37. M. Ciuchini et al., ΔM K and ε K in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [SPIRES].

    Article  ADS  Google Scholar 

  38. D. Becirevic et al., \( {B_d} - {\overline B_d} \) mixing and the B d J/ψK s asymmetry in general SUSY models, Nucl. Phys. B 634 (2002) 105 [hep-ph/0112303] [SPIRES].

    Article  ADS  Google Scholar 

  39. P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCA P 07 (2004) 008 [astro-ph/0406204] [SPIRES].

    ADS  Google Scholar 

  40. G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a fortran code for BR[BX s γ] in the MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [SPIRES].

    Article  ADS  Google Scholar 

  41. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].

  42. MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ +e +γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].

    Article  ADS  Google Scholar 

  43. MEGA collaboration, M. Ahmed et al., Search for the lepton-family-number nonconserving decay μ +e +γ, Phys. Rev. D 65 (2002) 112002 [hep-ex/0111030] [SPIRES].

    ADS  Google Scholar 

  44. L.M. Barkov et al., Search for μ +e +γ down to 10−14 branching ratio, PSI Proposal R-99-05, Paul Scherrer Institut, Switzerland (1999).

  45. MEG collaboration, S. Ritt, Status of the MEG experiment μeγ, Nucl. Phys. (Proc. Suppl.) 162 (2006) 279 [SPIRES].

    Article  ADS  Google Scholar 

  46. MEG collaboration, J. Adam et al., A limit for the μeγ decay from the MEG experiment, Nucl. Phys. B 834 (2010) 1 [arXiv:0908.2594] [SPIRES].

    Article  ADS  Google Scholar 

  47. M. Bona et al., SuperB: a high-luminosity asymmetric e + e super flavor factory. Conceptual design report, arXiv:0709.0451 [SPIRES].

  48. SuperKEKB Physics Working Group collaboration, A.G. Akeroyd et al., Physics at super B factory, hep-ex/0406071 [SPIRES].

  49. CDF collaboration, T. Aaltonen et al., First flavor-tagged determination of bounds on mixing-induced CP-violation in B 0 s J/→ψφ decays, Phys. Rev. Lett. 100 (2008) 161802 [arXiv:0712.2397] [SPIRES].

    Article  ADS  Google Scholar 

  50. D0 collaboration, V.M. Abazov et al., Measurement of B 0s mixing parameters from the flavor-tagged decay B 0s J/→ψφ, Phys. Rev. Lett. 101 (2008) 241801 [arXiv:0802.2255] [SPIRES].

    Article  ADS  Google Scholar 

  51. D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001 [arXiv:1005.2757] [SPIRES].

    ADS  Google Scholar 

  52. D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. Lett. 105 (2010) 081801 [arXiv:1007.0395] [SPIRES].

    Article  ADS  Google Scholar 

  53. A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF =2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [SPIRES].

    ADS  Google Scholar 

  54. A.J. Buras and D. Guadagnoli, On the consistency between the observed amount of CP-violation in the K and B d -systems within minimal flavor violation, Phys. Rev. D 79 (2009) 053010 [arXiv:0901.2056] [SPIRES].

    ADS  Google Scholar 

  55. E. Lunghi and A. Soni, Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B 666 (2008) 162 [arXiv:0803.4340] [SPIRES].

    ADS  Google Scholar 

  56. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  57. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  58. J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [SPIRES].

    ADS  Google Scholar 

  59. J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, A stropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [SPIRES].

    ADS  Google Scholar 

  60. K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [SPIRES].

    ADS  Google Scholar 

  61. J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [SPIRES].

    Article  ADS  Google Scholar 

  62. J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [SPIRES].

    ADS  Google Scholar 

  63. M. Drees and M.M. Nojiri, The neutralino relic density in minimal N =1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [SPIRES].

    ADS  Google Scholar 

  64. L. Calibbi, M. Frigerio, S. Lavignac and A. Romanino, Flavour violation in supersymmetric SO(10) unification with a type-II seesaw mechanism, JHEP 12 (2009) 057 [arXiv:0910.0377] [SPIRES].

    Article  ADS  Google Scholar 

  65. L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler, Consequences of a unified, anarchical model of fermion masses and mixings, JHEP 03 (2009) 031 [arXiv:0812.0087] [SPIRES].

    Article  ADS  Google Scholar 

  66. J. Ellis, A. Mustafayev and K.A. Olive, What if supersymmetry breaking unifies beyond the GUT scale?, Eur. Phys. J. C 69 (2010) 201 [arXiv:1003.3677] [SPIRES].

    Article  ADS  Google Scholar 

  67. J. Ellis, A. Mustafayev and K.A. Olive, Resurrecting no-scale supergravity phenomenology, Eur. Phys. J. C 69 (2010) 219 [arXiv:1004.5399] [SPIRES].

    Article  ADS  Google Scholar 

  68. L. Calibbi, Y. Mambrini and S.K. Vempati, SUSY-GUTs, SUSY-seesaw and the neutralino dark matter, JHEP 09 (2007) 081 [arXiv:0704.3518] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. M. Drees and J .M. Kim, Neutralino dark matter in an SO(10) model with two-step intermediate scale symmetry breaking, JHEP 12 (2008) 095 [arXiv:0810.1875] [SPIRES].

    Article  ADS  Google Scholar 

  70. E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for tau flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].

    Article  ADS  Google Scholar 

  71. M.E. Gomez, S. Lola, P. Naranjo and J. Rodriguez-Quintero, Suppression of lepton flavour violation from quantum corrections above M GUT, JHEP 06 (2010) 053 [arXiv:1003.4937] [SPIRES].

    Article  ADS  Google Scholar 

  72. B. Grinstein, A supersymmetric SU(5) gauge theory with no gauge hierarchy problem, Nucl. Phys. B 206 (1982) 387 [SPIRES].

    Article  ADS  Google Scholar 

  73. A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally massless Higgs doublets in supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [SPIRES].

    ADS  Google Scholar 

  74. G. Altarelli, F. Feruglio and I. Masina, From minimal to realistic supersymmetric SU(5) grand unification, JHEP 11 (2000) 040 [hep-ph/0007254] [SPIRES].

    Article  ADS  Google Scholar 

  75. P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. S. Blanchet and P. Fileviez Perez, Baryogenesis via leptogenesis in adjoint SU(5), JCA P 08 (2008) 037 [arXiv:0807.3740] [SPIRES].

    ADS  Google Scholar 

  77. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Calibbi.

Additional information

ArXiv ePrint: 1007.3750

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biggio, C., Calibbi, L. Phenomenology of SUSY SU(5) with type I+III seesaw. J. High Energ. Phys. 2010, 37 (2010). https://doi.org/10.1007/JHEP10(2010)037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2010)037

Keywords

Navigation