Skip to main content
Log in

A new string in ten dimensions?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

I suggest the possibility of a new string in ten dimensions. Evidence for this string is presented both from orientifold physics and from K-theory, along with a mystery concerning the M-theory description. Motivated by this possibility, some novel aspects of decoupling limits in heterotic/type I theories are described; specifically, the decoupled theory on type I D-strings is argued to be three-dimensional rather than two-dimensional. These decoupled theories provide the matrix model definitions of the heterotic/type I strings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  2. J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett. 54 (1985) 502 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev. D 59 (1999) 046006 [hep-th/9808061] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. A. Adams, O. DeWolfe and W. Taylor, String universality in ten dimensions, Phys. Rev. Lett. 105 (2010) 071601 [arXiv:1006.1352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B 376 (1992) 365 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Sen and S. Sethi, The mirror transform of type-I vacua in six-dimensions, Nucl. Phys. B 499 (1997) 45 [hep-th/9703157] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].

    ADS  Google Scholar 

  10. J. de Boer et al., Triples, fluxes and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].

    Google Scholar 

  11. A. Keurentjes, Discrete moduli for type-I compactifications, Phys. Rev. D 65 (2002) 026007 [hep-th/0105101] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. D.R. Morrison and S. Sethi, Novel type-I compactifications, JHEP 01 (2002) 032 [hep-th/0109197] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Pantev and E. Sharpe, Notes on gauging noneffective group actions, hep-th/0502027 [INSPIRE].

  14. T. Pantev and E. Sharpe, String compactifications on Calabi-Yau stacks, Nucl. Phys. B 733 (2006) 233 [hep-th/0502044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Sharpe, GLSMs, Gerbes and Kuznetsovs homological projective duality, arXiv:1004.5388 [INSPIRE].

  16. J. Polchinski and E. Witten, Evidence for heterotic type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Copsey, The instability of orientifolds and the end of the (string) landscape as we know it, arXiv:1303.4791 [INSPIRE].

  18. A. Dabholkar and J. Park, Strings on orientifolds, Nucl. Phys. B 477 (1996) 701 [hep-th/9604178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in D<10, Phys. Rev. Lett. 75 (1995) 2264 [hep-th/9505054] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Sen, SO(32) spinors of type-I and other solitons on brane-anti-brane pair, JHEP 09 (1998) 023 [hep-th/9808141] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Sen, Type-I D particle and its interactions, JHEP 10 (1998) 021 [hep-th/9809111] [INSPIRE].

    ADS  Google Scholar 

  22. E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP 05 (2000) 032 [hep-th/9912279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Distler, D.S. Freed and G.W. Moore, Orientifold precis, arXiv:0906.0795 [INSPIRE].

  26. D.S. Freed and M.J. Hopkins, On Ramond-Ramond fields and k-theory, JHEP 05 (2000) 044 [hep-th/0002027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. D.S. Freed, K-theory in quantum field theory, math-ph/0206031 [INSPIRE].

  28. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

    ADS  Google Scholar 

  29. T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. L. Motl, Proposals on nonperturbative superstring interactions, hep-th/9701025 [INSPIRE].

  31. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Sethi and L. Susskind, Rotational invariance in the M(atrix) formulation of type IIB theory, Phys. Lett. B 400 (1997) 265 [hep-th/9702101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Banks and N. Seiberg, Strings from matrices, Nucl. Phys. B 497 (1997) 41 [hep-th/9702187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Krogh, A matrix model for heterotic Spin(32)/ \( {{\mathbb{Z}}_2} \) and type-I string theory, Nucl. Phys. B 541 (1999) 87 [hep-th/9801034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Krogh, Heterotic matrix theory with Wilson lines on the lightlike circle, Nucl. Phys. B 541 (1999) 98 [hep-th/9803088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J. Polchinski, Open heterotic strings, JHEP 09 (2006) 082 [hep-th/0510033] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Sethi, The matrix formulation of type IIB five-branes, Nucl. Phys. B 523 (1998) 158 [hep-th/9710005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Kapustin and S. Sethi, The Higgs branch of impurity theories, Adv. Theor. Math. Phys. 2 (1998) 571 [hep-th/9804027] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  40. J. Bagger and N. Lambert, Comments on multiple M 2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. D.S. Berman, M.J. Perry, E. Sezgin and D.C. Thompson, Boundary conditions for interacting membranes, JHEP 04 (2010) 025 [arXiv:0912.3504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D.S. Berman and D.C. Thompson, Membranes with a boundary, Nucl. Phys. B 820 (2009) 503 [arXiv:0904.0241] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple membranes in M-theory, Phys. Rept. 527 (2013) 1 [arXiv:1203.3546] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys. 73 (2001) 419 [hep-th/0101126] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savdeep Sethi.

Additional information

ArXiv ePrint: 1304.1551

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethi, S. A new string in ten dimensions?. J. High Energ. Phys. 2013, 149 (2013). https://doi.org/10.1007/JHEP09(2013)149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)149

Keywords

Navigation