Skip to main content
Log in

d-wave holographic superconductors with backreaction in external magnetic fields

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the d-wave holographic superconductors (the d-wave model proposed in [arXiv:1003.2991[hep-th]]) immersed in constant external magnetic fields by using the analytic matching method and numerical computation. In the probe limit, we calculate the spatially dependent condensate solution in the presence of the magnetism and find that the expression for the upper critical magnetic field satisfies the relation given in the Ginzburg- Landau theory. The result shows that the upper critical field gradually increases to its maximum value B c2 at absolute zero temperature T = 0, while vanishing at the critical temperature T = T c. Moving away from the probe limit, we investigate the effect of spacetime backreaction on the critical temperature and the upper critical magnetic field. The magnetic fields as well as the electric fields acting as gravitational sources reduce the critical temperature of the superconductor and actually result in a dyonic black hole solution to the leading order. We obtain the expression for the upper critical magnetic field up to O2) order. The analytic result is consistent with the numerical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  6. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards a holographic model of d-wave superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].

    ADS  Google Scholar 

  8. F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Kanno, A note on Gauss-bonnet holographic superconductors, Class. Quant. Grav. 28 (2011) 127001 [arXiv:1103.5022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. Y. Brihaye and B. Hartmann, Holographic superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [INSPIRE].

    ADS  Google Scholar 

  11. L. Barcaly, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet holographic superconductors, JHEP 12 (2010) 029 [arXiv:1009.1991] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Siani, Holographic superconductors and higher curvature corrections, JHEP 12 (2010) 035 [arXiv:1010.0700] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Ammon, J. Erdmenger, P. Kerner and M. Kaminski, Flavor superconductivity from gauge/gravity duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].

    ADS  Google Scholar 

  16. R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic phase transitions of p-wave superconductors in Gauss-Bonnet gravity with back-reaction, Phys. Rev. D 83 (2011) 066013 [arXiv:1012.5559] [INSPIRE].

    ADS  Google Scholar 

  17. Q. Pan and B. Wang, General holographic superconductor models with backreactions, arXiv:1101.0222 [INSPIRE].

  18. Y. Liu, Q. Pan and B. Wang, Holographic superconductor developed in BTZ black hole background with backreactions, Phys. Lett. B 702 (2011) 94 [arXiv:1106.4353] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Liu, Y. Peng and B. Wang, Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics with backreactions, arXiv:1202.3586 [INSPIRE].

  20. Y. Peng, X.-M. Kuang, Y. Liu and B. Wang, Phase transition in the holographic model of superfluidity with backreactions, arXiv:1204.2853 [INSPIRE].

  21. J. Jing, L. Wang, Q. Pan and S. Chen, Holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics, Phys. Rev. D 83 (2011) 066010 [arXiv:1012.0644] [INSPIRE].

    ADS  Google Scholar 

  22. S. Chen, Q. Pan and J. Jing, Holographic superconductor models in the non-minimal derivative coupling theory, Chin. Phys. B 21 (2012) 040403 [arXiv:1012.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  23. X.H. Ge, Analytical calculation on critical magnetic field in holographic superconductors with backreaction, [arXiv:1105.4333] [INSPIRE].

  24. C.P. Herzog, An analytic holographic superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [INSPIRE].

    ADS  Google Scholar 

  25. G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Gangopadhyay and D. Roychowdhury, Analytic study of properties of holographic superconductors in Born-Infeld electrodynamics, JHEP 05 (2012) 002 [arXiv:1201.6520] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R.-G. Cai, H.-F. Li and H.-Q. Zhang, Analytical studies on holographic insulator/superconductor phase transitions, Phys. Rev. D 83 (2011) 126007 [arXiv:1103.5568] [INSPIRE].

    ADS  Google Scholar 

  28. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].

    ADS  Google Scholar 

  29. T. Albash and C.V. Johnson, A holographic superconductor in an external magnetic field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [INSPIRE].

    ADS  Google Scholar 

  31. W.-Y. Wen, Inhomogeneous magnetic field in AdS/CFT superconductor, arXiv:0805.1550 [INSPIRE].

  32. T. Albash and C.V. Johnson, A holographic superconductor in an external magnetic field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J.-P. Wu, The Stuckelberg holographic superconductors in constant external magnetic field, arXiv:1006.0456 [INSPIRE].

  34. F. Preis, A. Rebhan and A. Schmitt, Holographic baryonic matter in a background magnetic field, J. Phys. G 39 (2012) 054006 [arXiv:1109.6904] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Albash and C.V. Johnson, Landau levels, magnetic fields and holographic Fermi liquids, J. Phys. A 43 (2010) 345404 [arXiv:1001.3700] [INSPIRE].

    MathSciNet  Google Scholar 

  36. R.-G. Cai, L. Li, H.-Q. Zhang and Y.-L. Zhang, Magnetic field effect on the phase transition in AdS soliton spacetime, Phys. Rev. D 84 (2011) 126008 [arXiv:1109.5885] [INSPIRE].

    ADS  Google Scholar 

  37. E. Gubankova et al., Holographic fermions in external magnetic fields, Phys. Rev. D 84 (2011) 106003 [arXiv:1011.4051] [INSPIRE].

    ADS  Google Scholar 

  38. M. Montull, O. Pujolàs, A. Salvio and P.J. Silva, Magnetic response in the holographic insulator/superconductor transition, JHEP 04 (2012) 135 [arXiv:1202.0006] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, d-wave holographic superconductor vortex lattice and non-abelian holographic superconductor droplet, Phys. Rev. D 82 (2010) 126008 [arXiv:1007.4151] [INSPIRE].

    ADS  Google Scholar 

  40. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].

    ADS  Google Scholar 

  43. L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. Y.M. Ma et al., Significantly enhanced critical current densities in MgB 2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Lett. 88 (2006) 072502 .

    Article  ADS  Google Scholar 

  45. Y. Zhang et al., The effect of carbon doping on the upper critical field (H c2 ) and resistivity of MgB 2 by using sucrose (C 12 H 22 O 11 ) asthe carbon source, Supercond. Sci. Technol. 22 (2009) 015025 .

    Article  ADS  Google Scholar 

  46. X.P. Zhang et al., Doping with a special carbohydrate, C 9 H 11 NO, to improve the J c -B properties of MgB 2 tapes, Supercond. Sci. Technol. 23 (2010) 025024.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Hui Ge.

Additional information

ArXiv ePrint: 1209.4272

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, XH., Tu, S.F. & Wang, B. d-wave holographic superconductors with backreaction in external magnetic fields. J. High Energ. Phys. 2012, 88 (2012). https://doi.org/10.1007/JHEP09(2012)088

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)088

Keywords

Navigation