Skip to main content
Log in

Unitarity alternatives in the reduced-action model for gravitational collapse

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Based on the ACV approach to transplanckian energies, the reduced-action model for the gravitational S-matrix predicts a critical impact parameter \( {b_c} \sim R \equiv 2G\sqrt {s} \) such that S-matrix unitarity is satisfied in the perturbative region b > b c , while it is exponentially suppressed with respect to s in the region b < b c that we think corresponds to gravitational collapse. Here we definitely confirm this statement by a detailed analysis of both the critical region b ≃ b c and of further possible contributions due to quantum transitions for b < b c . We point out, however, that the subcritical unitarity suppression is basically due to the boundary condition which insures that the solutions of the model be ultraviolet-safe. As an alternative, relaxing such condition leads to solutions which carry short-distance singularities presumably regularized by the string. We suggest that through such solutions — depending on the detailed dynamics at the string scale — the lost probability may be recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett. B 197 (1987) 81 [SPIRES].

    ADS  Google Scholar 

  2. D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [SPIRES].

    ADS  Google Scholar 

  3. D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [SPIRES].

    ADS  Google Scholar 

  4. D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  5. D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988) 407 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Amati, M. Ciafaloni and G. Veneziano, Higher order gravitational deflection and soft bremsstrahlung in planckian energy superstring collisions, Nucl. Phys. B 347 (1990) 550 [SPIRES].

    Article  ADS  Google Scholar 

  7. D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at planckian energies, Nucl. Phys. B 403 (1993) 707 [SPIRES].

    Article  ADS  Google Scholar 

  8. D. Amati, M. Ciafaloni and G. Veneziano, Towards an S-matrix description of gravitational collapse, JHEP 02 (2008) 049 [arXiv:0712.1209] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Ciafaloni and D. Colferai, S-matrix and quantum tunneling in gravitational collapse, JHEP 11 (2008) 047 [arXiv:0807.2117] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Ciafaloni and D. Colferai, Quantum tunneling and unitarity features of an S-matrix for gravitational collapse, JHEP 12 (2009) 062 [arXiv:0909.4523] [SPIRES].

    Article  ADS  Google Scholar 

  11. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [SPIRES].

    Article  ADS  Google Scholar 

  12. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  13. S.W. Hawking, Black holes and the information paradox, prepared for GR 17: 17th international conference on general relativity and gravitation, July 18–24, Dublin, Ireland (2004).

  14. S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. L.N. Lipatov, Multi-Regge processes in gravitation, Sov. Phys. JETP 55 (1982) 582 [Zh. Eksp. Teor. Fiz. 82 (1982) 991] [SPIRES].

    Google Scholar 

  16. M. Ademollo, A. Bellini and M. Ciafaloni, Superstring Regge amplitudes and emission vertices, Phys. Lett. B 223 (1989) 318 [SPIRES].

    ADS  Google Scholar 

  17. M. Ademollo, A. Bellini and M. Ciafaloni, Superstring Regge amplitudes and graviton radiation at planckian energies, Nucl. Phys. B 338 (1990) 114 [SPIRES].

    Article  ADS  Google Scholar 

  18. L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Kirschner and L. Szymanowski, Effective action for high-energy scattering in gravity, Phys. Rev. D 52 (1995) 2333 [hep-th/9412087] [SPIRES].

    ADS  Google Scholar 

  20. E.P. Verlinde and H.L. Verlinde, High-energy scattering in quantum gravity, Class. Quant. Grav. 10 (1993) S175 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Ciafaloni and G. Veneziano, unpublished.

  22. V.A. Abramovsky, V.N. Gribov and O.V. Kancheli, Character of inclusive spectra and fluctuations produced in inelastic processes by multi-Pomeron exchange, Yad. Fiz. 18 (1973) 595 [Sov. J. Nucl. Phys. 18 (1974) 308] [SPIRES].

    Google Scholar 

  23. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover publications, U.S.A. (1965).

    Google Scholar 

  24. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high-energy particles, Phys. Rev. D 67 (2003) 024009 [gr-qc/0209003] [SPIRES].

    ADS  Google Scholar 

  26. S.B. Giddings and V.S. Rychkov, Black holes from colliding wavepackets, Phys. Rev. D 70 (2004) 104026 [hep-th/0409131] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  27. E. Kohlprath and G. Veneziano, Black holes from high-energy beam-beam collisions, JHEP 06 (2002) 057 [gr-qc/0203093] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse, JHEP 09 (2008) 023 [arXiv:0804.3321] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Veneziano and J. Wosiek, Exploring an S-matrix for gravitational collapse II: a momentum space analysis, JHEP 09 (2008) 024 [arXiv:0805.2973] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Marchesini and E. Onofri, High energy gravitational scattering: a numerical study, JHEP 06 (2008) 104 [arXiv:0803.0250] [SPIRES].

    Article  ADS  Google Scholar 

  31. S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [SPIRES].

    ADS  Google Scholar 

  32. G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  33. G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane scattering: leading eikonal and beyond, JHEP 11 (2010) 100 [arXiv:1008.4773] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Colferai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciafaloni, M., Colferai, D. & Falcioni, G. Unitarity alternatives in the reduced-action model for gravitational collapse. J. High Energ. Phys. 2011, 44 (2011). https://doi.org/10.1007/JHEP09(2011)044

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)044

Keywords

Navigation