Skip to main content
Log in

Seesaw type I and III at the LHeC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the potential of testing the seesaw type-I and III models at the Large Hadron-electron Collider (LHeC), an e-p collision mode at the CERN collider. The e-p collision mode provides an excellent place to study lepton number violating processes e pN i j + Xe + W j + X, e pN i j + Xτ ± W j + X and e pE i j + Xτ Zj + X with W and Z into hadron jets. Here N 1,2,3 and E 1,2,3 are heavy Majorana neutrinos and heavy charged leptons, and j is a hard hadron jet. Although the process e pN i j + Xe + W j + X is stringently constrained from neutrinoless double-beta decay, there are solutions where this constraint can be satisfied with sizeable production cross section. With the electron energy E e = 140 GeV and proton energy E p = 7 TeV, we find that the cross section for the heavy charged lepton E production can reach a few fb when the heavy charged lepton mass m E < 600 GeV. For the heavy neutrino N production, the cross section can be as large as a few fb for the mass scale as high as 1 TeV, higher than what can be achieved by the p-p collision mode of LHC with the same related heavy neutrino couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  2. W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [SPIRES].

    ADS  Google Scholar 

  3. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  4. T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].

    ADS  Google Scholar 

  5. A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].

    ADS  Google Scholar 

  6. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  7. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  8. K.S. Babu, Model of ’Calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].

    ADS  Google Scholar 

  9. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  10. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [SPIRES].

    ADS  Google Scholar 

  11. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  12. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the workshop on the unified theory and the baryon number in the universe, O. Sawada and A. Sugamoto eds, KEK, Tsukuba Japan (1979), pag. 95.

    Google Scholar 

  13. M. Gell-Mann, P. Ramond, and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D. Freedman eds., North-Holland, Amsterdam The Netherlands (1979), pag. 315.

    Google Scholar 

  14. S.L. Glashow, The future of elementary particle physics, in the Proceedings of the 1979 Cargese Summer Institute on Quarks and Leptons, M. Levy et al. eds., Plenum Press, New York U.S.A. (1980), pag. 687.

    Google Scholar 

  15. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  16. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [SPIRES].

    Article  ADS  Google Scholar 

  17. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  18. T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].

    Article  ADS  Google Scholar 

  20. F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Neutrino physics at large colliders, J. Phys. Conf. Ser. 53 (2006) 506 [hep-ph/0606198] [SPIRES].

    Article  Google Scholar 

  21. F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [SPIRES].

    Article  Google Scholar 

  22. J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [SPIRES].

    ADS  Google Scholar 

  23. S. Bar-Shalom, G. Eilam, T. Han and A. Soni, Charged Higgs boson effects in the production and decay of a heavy Majorana neutrino at the LHC, Phys. Rev. D 77 (2008) 115019 [arXiv:0803.2835] [SPIRES].

    ADS  Google Scholar 

  24. P. Fileviez Perez, T. Han and T. Li, Testability of type I seesaw at the CERN LHC: revealing the existence of the B-L symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [SPIRES].

    ADS  Google Scholar 

  25. E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [SPIRES].

    ADS  Google Scholar 

  26. T. Han, H.E. Logan, B. Mukhopadhyaya and R. Srikanth, Neutrino masses and lepton-number violation in the littlest Higgs scenario, Phys. Rev. D 72 (2005) 053007 [hep-ph/0505260] [SPIRES].

    ADS  Google Scholar 

  27. C.-S. Chen, C.-Q. Geng, J.N. Ng and J.M.S. Wu, Testing radiative neutrino mass generation at the LHC, JHEP 08 (2007) 022 [arXiv:0706.1964] [SPIRES].

    Article  ADS  Google Scholar 

  28. A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC, Nucl. Phys. B 787 (2007) 198 [arXiv:0705.1495] [SPIRES].

    Article  ADS  Google Scholar 

  29. T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [SPIRES].

    ADS  Google Scholar 

  30. J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Kadastik, M. Raidal and L. Rebane, Direct determination of neutrino mass parameters at future colliders, Phys. Rev. D 77 (2008) 115023 [arXiv:0712.3912] [SPIRES].

    ADS  Google Scholar 

  32. A.G. Akeroyd, M. Aoki and H. Sugiyama, Probing Majorana phases and neutrino mass spectrum in The higgs triplet model at the LHC, Phys. Rev. D 77 (2008) 075010 [arXiv:0712.4019] [SPIRES].

    ADS  Google Scholar 

  33. W. Chao, S. Luo, Z.-z. Xing and S. Zhou, A compromise between neutrino masses and collider signatures in the type-II seesaw model, Phys. Rev. D 77 (2008) 016001 [arXiv:0709.1069] [SPIRES].

    ADS  Google Scholar 

  34. W. Chao, Z.-G. Si, Z.-z. Xing and S. Zhou, Correlative signatures of heavy Majorana neutrinos and doubly-charged Higgs bosons at the Large Hadron Collider, Phys. Lett. B 666 (2008) 451 [arXiv:0804.1265] [SPIRES].

    ADS  Google Scholar 

  35. P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Testing a neutrino mass generation mechanism at the Large Hadron Collider, Phys. Rev. D 78 (2008) 071301 [arXiv:0803.3450] [SPIRES].

    ADS  Google Scholar 

  36. P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino masses and the LHC: testing type II seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [SPIRES].

    ADS  Google Scholar 

  37. P. Fileviez Perez, T. Han, T. Li and M.J. Ramsey-Musolf, Leptoquarks and neutrino masses at the LHC, Nucl. Phys. B 819 (2009) 139 [arXiv:0810.4138] [SPIRES].

    Article  ADS  Google Scholar 

  38. F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].

    Article  ADS  Google Scholar 

  39. R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [SPIRES].

    ADS  Google Scholar 

  40. B. Bajc, M. Nemevsek and G. Senjanović, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [SPIRES].

    ADS  Google Scholar 

  41. P. Fileviez Perez, Type III seesaw and left-right symmetry, JHEP 03 (2009) 142 [arXiv:0809.1202] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Li and X.-G. He, Neutrino masses and heavy triplet leptons at the LHC: testability of type III seesaw, Phys. Rev. D 80 (2009) 093003 [arXiv:0907.4193] [SPIRES].

    ADS  Google Scholar 

  43. K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [SPIRES].

    Article  ADS  Google Scholar 

  44. A. Arhrib et al., Collider signatures for heavy lepton triplet in type I+III seesaw, arXiv:0904.2390 [SPIRES].

  45. J.B. Dainton, M. Klein, P. Newman, E. Perez and F. Willeke, Deep inelastic electron nucleon scattering at the LHC, 2006 JINST 1 P10001 [hep-ex/0603016] [SPIRES].

    ADS  Google Scholar 

  46. The LHeC web page, http://www.lhec.org.uk.

  47. X.-G. He, S. Oh, J. Tandean and C.-C. Wen, Large mixing of light and heavy neutrinos in seesaw models and the LHC, Phys. Rev. D 80 (2009) 073012 [arXiv:0907.1607] [SPIRES].

    ADS  Google Scholar 

  48. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  49. B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [SPIRES].

    ADS  Google Scholar 

  50. N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [SPIRES].

    Article  ADS  Google Scholar 

  51. M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].

    Article  ADS  Google Scholar 

  52. W. Buchmüller and D. Wyler, Dilatons and Majorana neutrinos, Phys. Lett. B 249 (1990) 458 [SPIRES].

    ADS  Google Scholar 

  53. W. Buchmüller and C. Greub, Heavy Majorana neutrinos in electron-positron and electron-proton collisions, Nucl. Phys. B 363 (1991) 345 [SPIRES].

    Article  ADS  Google Scholar 

  54. J. Gluza, On teraelectronvolt Majorana neutrinos, Acta Phys. Polon. B 33 (2002) 1735 [hep-ph/0201002] [SPIRES].

    ADS  Google Scholar 

  55. G. Ingelman and J. Rathsman, Heavy Majorana neutrinos at ep colliders, Z. Phys. C 60 (1993) 243 [SPIRES].

    ADS  Google Scholar 

  56. A. Pilaftsis, Resonant τ leptogenesis with observable lepton number violation, Phys. Rev. Lett. 95 (2005) 081602 [hep-ph/0408103] [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].

    ADS  Google Scholar 

  58. E. Ma, Deciphering the seesaw nature of neutrino mass from unitarity violation, Mod. Phys. Lett. A 24 (2009) 2161 [arXiv:0904.1580] [SPIRES].

    ADS  Google Scholar 

  59. Z.-z. Xing, Naturalness and testability of TeV seesaw mechanisms, Prog. Theor. Phys. Suppl. 180 (2010) 112 [arXiv:0905.3903] [SPIRES].

    Article  ADS  Google Scholar 

  60. X.-G. He and E. Ma, Seesaw options for three neutrinos, Phys. Lett. B 683 (2010) 178 [arXiv:0907.2737] [SPIRES].

    ADS  Google Scholar 

  61. X.-G. He and S. Oh, Lepton FCNC in type III seesaw model, JHEP 09 (2009) 027 [arXiv:0902.4082] [SPIRES].

    Article  ADS  Google Scholar 

  62. S.C. Park, K. Wang and T.T. Yanagida, Neutrino mass from a hidden world and its phenomenological implications, Phys. Lett. B 685 (2010) 309 [arXiv:0909.2937] [SPIRES].

    ADS  Google Scholar 

  63. J.-H. Chen, X.-G. He, J. Tandean and L.-H. Tsai, Effect on Higgs boson decays from large light-heavy neutrino mixing in seesaw models, Phys. Rev. D 81 (2010) 113004 [arXiv:1001.5215] [SPIRES].

    ADS  Google Scholar 

  64. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [SPIRES].

    ADS  Google Scholar 

  65. F. del Aguila, J.A. Aguilar-Saavedra, J. de Blas and M. Pérez-Victoria, Electroweak constraints on see-saw messengers and their implications for LHC, arXiv:0806.1023 [SPIRES].

  66. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].

    Article  ADS  Google Scholar 

  67. G. Bélanger, F. Boudjema, D. London and H. Nadeau, Inverse neutrinoless double β decay revisited, Phys. Rev. D 53 (1996) 6292 [hep-ph/9508317] [SPIRES].

    ADS  Google Scholar 

  68. L3 collaboration, O. Adriani et al., Search for isosinglet neutral heavy leptons in Z 0 decays, Phys. Lett. B 295 (1992) 371 [SPIRES].

    ADS  Google Scholar 

  69. DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [SPIRES].

    Google Scholar 

  70. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, μe → γ and τ → lγ decays in the fermion triplet seesaw model, Phys. Rev. D 78 (2008) 033007 [arXiv:0803.0481] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Shao-Ming.

Additional information

ArXiv ePrint: 1006.5534v3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, L., He, XG., Wen-Gan, M. et al. Seesaw type I and III at the LHeC. J. High Energ. Phys. 2010, 23 (2010). https://doi.org/10.1007/JHEP09(2010)023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)023

Keywords

Navigation