Skip to main content
Log in

Discovery potential of top-partners in a realistic composite Higgs model with early LHC data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Composite Higgs models provide a natural, non-supersymmetric solution to the hierarchy problem. In these models, one or more sets of heavy top-partners are typically introduced. Some of these new quarks can be relatively light, with a mass of a few hundred GeV, and could be observed with the early LHC collision data expected to be collected during 2010. We analyse in detail the collider signatures that these new quarks can produce. We show that final states with two (same-sign) or three leptons are the most promising discovery channels. They can yield a 5σ excess over the Standard Model expectation already with the 2010 LHC collision data. Exotic quarks of charge 5/3 are a distinctive feature of this model. We present a new method to reconstruct their masses from their leptonic decay without relying on jets in the final state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  2. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  3. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  4. K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  5. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].

    ADS  Google Scholar 

  7. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].

    ADS  Google Scholar 

  8. P. Lodone, Vector-like quarks in a composite Higgs model, JHEP 12 (2008) 029 [arXiv:0806.1472] [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [SPIRES].

    ADS  Google Scholar 

  10. C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [SPIRES].

    ADS  Google Scholar 

  11. G. Azuelos et al., Exploring little Higgs models with ATLAS at the LHC, Eur. Phys. J. C 39S2 (2005) 13 [hep-ph/0402037] [SPIRES].

    Article  ADS  Google Scholar 

  12. CMS collaboration, K. Karafasoulis, A. Kyriakis, H. Petrakou, K. Mazumdar, Little Higgs Model and Top-like Heavy Quark at CMS, CERN Switzerland (2006), CMS-NOTE-2006-079.

  13. S. Matsumoto, M.M. Nojiri and D. Nomura, Hunting for the top partner in the littlest Higgs model with T parity at the LHC, Phys. Rev. D 75 (2007) 055006 [hep-ph/0612249] [SPIRES].

    ADS  Google Scholar 

  14. M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E.M. Wagner, Collider Phenomenology of Gauge-Higgs Unification Scenarios in Warped Extra Dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [SPIRES].

    ADS  Google Scholar 

  15. C. Dennis, M. Karagoz, G. Servant and J. Tseng, Multi-W events at LHC from a warped extra dimension with custodial symmetry, hep-ph/0701158 [SPIRES].

  16. B. Holdom, The heavy quark search at the LHC, JHEP 08 (2007) 069 [arXiv:0705.1736] [SPIRES].

    Article  ADS  Google Scholar 

  17. B. Holdom, t′ at the LHC: The physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037] [SPIRES].

    Article  ADS  Google Scholar 

  18. CMS collaboration, Search for Low Mass b′ Production in CMS, CMS Physics Analysis Summary, CERN Switzerland (2009), CMS-PAS-EXO-08-013.

  19. CMS collaboration, Search for a Fourth Generation b′ Quark in tW Final State at CMS in pp Collisions at \( \sqrt {s} = 10\;TeV \), CERN Switzerland (2009), CMS-PAS-EXO-09-012.

  20. J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [SPIRES].

    Article  ADS  Google Scholar 

  21. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [SPIRES].

    ADS  Google Scholar 

  22. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  23. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].

    ADS  Google Scholar 

  24. CMS collaboration, Search for Exotic Top Partners with the CMS Experiment, CMS P hysics Analysis Summary, CERN Switzerland (2009), CMS-PAS-EXO-08-008.

  25. R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [SPIRES].

    ADS  Google Scholar 

  27. ALEPH, CDF, D0, DELPHY, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD electroweak heavy flavour groups, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:0811.4682 [SPIRES].

  28. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  29. T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  30. CDF collaboration, T. Aaltonen et al., Search for New Bottomlike Quark Pair Decays \( Q\bar{Q} \to \left( {t{W^\mp }} \right)\left( {\bar{t}{W^\mp }} \right) \) in Same-Charge Dilepton Events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [SPIRES].

    Article  ADS  Google Scholar 

  31. CDF collaboration, T. Aaltonen et al., Search for New Particles Leading to Z+ jets Final States in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96\;TeV \) , Phys. Rev. D 76 (2007) 072006 [arXiv:0706.3264] [SPIRES].

    ADS  Google Scholar 

  32. CDF collaboration, T. Aaltonen et al., Search for Heavy Top-like Quarks Using Lepton Plus Jets Events in 1.96 TeV \( p\bar{p} \) Collisions, Phys. Rev. Lett. 100 (2008) 161803 [arXiv:0801.3877] [SPIRES].

    Article  ADS  Google Scholar 

  33. CDF collaboration, A. Lister, Search for Heavy Top-like Quarks t′Wq Using Lepton Plus Jets Events in 1.96 TeV \( p\bar{p} \) Collisions, arXiv:0810.3349 [SPIRES].

  34. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  35. F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].

    Article  ADS  Google Scholar 

  36. T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].

    Article  ADS  Google Scholar 

  37. H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity Amplitude Subroutines For Feynman Diagram Evaluations, KEK Report 91-11, Tsukuba Japan (1992).

  38. P. Meade and M. Reece, BRIDGE: Branching ratio inquiry/decay generated events, hep-ph/0703031 [SPIRES].

  39. J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [SPIRES].

    Article  ADS  Google Scholar 

  40. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  41. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].

    Article  ADS  Google Scholar 

  42. T. Plehn, D. Rainwater and P.Z. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [SPIRES].

    ADS  Google Scholar 

  43. S. Belov et al., LCG MCDB: A knowledgebase of Monte Carlo simulated events, Comput. Phys. Commun. 178 (2008) 222 [hep-ph/0703287] [SPIRES].

    Article  ADS  Google Scholar 

  44. S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].

  45. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  46. CMS collaboration, CMS Physics: Technical Design Report, Volume I: Detector Performance and Software, Technical Design Report, CERN Switzerland (2006), CERN-LHCC-2006-001.

  47. A.L. Read, Modified frequentist analysis of search results (the CL s method), CERN Switzerland (2000), CERN-OPEN-2000-205.

  48. T. Junk, Confidence Level Computation for Combining Searches with Small Statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [SPIRES].

    ADS  Google Scholar 

  49. J. Mrazek and A. Wulzer, A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [SPIRES].

    ADS  Google Scholar 

  50. S. Kraml and A.R. Raklev, Same-sign top quarks as signature of light stops at the LHC, Phys. Rev. D 73 (2006) 075002 [hep-ph/0512284] [SPIRES].

    ADS  Google Scholar 

  51. E.L. Berger and Q.-H. Cao, Next-to-Leading Order Cross sections for New Heavy Fermion Production at Hadron Colliders, Phys. Rev. D 81 (2010) 035006 [arXiv:0909.3555] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Nef.

Additional information

ArXiv ePrint: 1005.4414

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dissertori, G., Furlan, E., Moortgat, F. et al. Discovery potential of top-partners in a realistic composite Higgs model with early LHC data. J. High Energ. Phys. 2010, 19 (2010). https://doi.org/10.1007/JHEP09(2010)019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)019

Keywords

Navigation