Skip to main content
Log in

New ways to TeV scale leptogenesis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that by adding to the standard model plus the type I seesaw different types of scalars, it is possible to construct models that satisfy the three requirements of (i) generating neutrino masses at the TeV scale, (ii) being testable at the LHC via direct production of new states, and (iii) allowing for leptogenesis at temperatures T ~ O(TeV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan February 13-14 1979 [INSPIRE].

  3. S. Glashow, The future of elementary particle physics, in Quarks and leptons, Cargèse lectures, Plenum Press, New York U.S.A. (1980), pg. 687 [INSPIRE].

  4. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, published in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland Publ. Co., The Netherlands (1979) [arXiv:1306.4669] [INSPIRE].

  5. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  6. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  7. M. Fukugita and T. Yanagida, Resurrection of Grand Unified Theory baryogenesis, Phys. Rev. Lett. 89 (2002) 131602 [hep-ph/0203194] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the universe, Adv. High Energy Phys. 2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].

    MathSciNet  Google Scholar 

  10. S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].

    Article  ADS  Google Scholar 

  11. L. Canetti, M. Drewes and M. Shaposhnikov, Sterile neutrinos as the origin of dark and baryonic matter, Phys. Rev. Lett. 110 (2013), no. 6 061801 [arXiv:1204.3902] [INSPIRE].

  12. M. Drewes and B. Garbrecht, Leptogenesis from a GeV seesaw without mass degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Casas and A. Ibarra, Oscillating neutrinos and muon, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    Article  ADS  Google Scholar 

  14. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

  15. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N 2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Blanchet and P. Di Bari, New aspects of leptogenesis bounds, Nucl. Phys. B 807 (2009) 155 [arXiv:0807.0743] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Racker, M. Pena and N. Rius, Leptogenesis with small violation of B-L, JCAP 07 (2012) 030 [arXiv:1205.1948] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Pilaftsis and T.E. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Pilaftsis, Resonant τ -leptogenesis with observable lepton number violation, Phys. Rev. Lett. 95 (2005) 081602 [hep-ph/0408103] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Pilaftsis and T.E. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE]

    ADS  Google Scholar 

  24. A. Ibarra and C. Simonetto, Understanding neutrino properties from decoupling right-handed neutrinos and extra Higgs doublets, JHEP 11 (2011) 022 [arXiv:1107.2386] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Ibarra and C. Simonetto, Understanding neutrino properties in a 2HDM see-saw, PoS(EPS-HEP2011)093 [INSPIRE].

  26. H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Grifols and A. Mendez, Pair production of colored hypermesons at very high-energy, Phys. Rev. D 26 (1982) 324 [INSPIRE].

    ADS  Google Scholar 

  29. J. Hewett and S. Pakvasa, Leptoquark production in hadron colliders, Phys. Rev. D 37 (1988) 3165 [INSPIRE].

    ADS  Google Scholar 

  30. J. Blumlein, E. Boos and A. Kryukov, Leptoquark pair production in hadronic interactions, Z. Phys. C 76 (1997) 137 [hep-ph/9610408] [INSPIRE].

  31. M. Krämer, T. Plehn, M. Spira and P. Zerwas, Pair production of scalar leptoquarks at the Tevatron, Phys. Rev. Lett. 79 (1997) 341 [hep-ph/9704322] [INSPIRE].

  32. M. Krämer, T. Plehn, M. Spira and P. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D 71 (2005) 057503 [hep-ph/0411038] [INSPIRE].

    ADS  Google Scholar 

  33. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  34. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

  35. D. Aristizabal Sierra, M. Losada and E. Nardi, Lepton flavor equilibration and leptogenesis, JCAP 12 (2009) 015 [arXiv:0905.0662] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.M. Cline, K. Kainulainen and K.A. Olive, Protecting the primordial baryon asymmetry from erasure by sphalerons, Phys. Rev. D 49 (1994) 6394 [hep-ph/9401208] [INSPIRE].

    ADS  Google Scholar 

  37. C.S. Fong, M. Gonzalez-Garcia and E. Nardi, Early universe effective theories: the soft leptogenesis and R-genesis cases, JCAP 02 (2011) 032 [arXiv:1012.1597] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C.S. Fong, M. Gonzalez-Garcia, E. Nardi and J. Racker, Supersymmetric leptogenesis, JCAP 12 (2010) 013 [arXiv:1009.0003] [INSPIRE].

    Article  ADS  Google Scholar 

  39. E. Nardi, J. Racker and E. Roulet, CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis, JHEP 09 (2007) 090 [arXiv:0707.0378] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

  41. CMS collaboration, Search for pair-production of second generation leptoquarks in 8 TeV proton-proton collisions., CMS-PAS-EXO-12-042, CERN, Geneva Switzerland (2012).

  42. CMS collaboration, Search for pair production of first- and second-generation scalar leptoquarks in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. D 86 (2012) 052013 [arXiv:1207.5406] [INSPIRE].

  43. CMS collaboration, Search for pair production of third-generation leptoquarks and top squarks in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 110 (2013) 081801 [arXiv:1210.5629] [INSPIRE].

  44. ATLAS collaboration, Search for third generation scalar leptoquarks in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 06 (2013) 033 [arXiv:1303.0526] [INSPIRE].

  45. ATLAS collaboration, Search for second generation scalar leptoquarks in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2151 [arXiv:1203.3172] [INSPIRE].

  46. S. Dimopoulos and D.W. Sutter, The supersymmetric flavor problem, Nucl. Phys. B 452 (1995) 496 [hep-ph/9504415] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D.W. Sutter, The supersymmetric flavor problem and μ → e + γ, hep-ph/9704390 [INSPIRE].

  48. MEG collaboration, J. Adam et al., New constraint on the existence of the μ + → e + γ decay, arXiv:1303.0754 [INSPIRE].

  49. J. Casas, J. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. 1. Application to SUSY and seesaw cases, 004AHEP 11 (2004) 057 [hep-ph/0410298] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Nardi.

Additional information

ArXiv ePrint: 1305.6312

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, C.S., Gonzalez-Garcia, M.C., Nardi, E. et al. New ways to TeV scale leptogenesis. J. High Energ. Phys. 2013, 104 (2013). https://doi.org/10.1007/JHEP08(2013)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)104

Keywords

Navigation