Skip to main content
Log in

Enhanced thermal photon and dilepton production in strongly coupled \( \mathcal{N} \) = 4 SYM plasma in strong magnetic field

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate the DC conductivity tensor of strongly coupled \( \mathcal{N} \) = 4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field BT 2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled \( \mathcal{N} \) = 4 SYM plasma in the presence of the strong external magnetic field BT 2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled \( \mathcal{N} \) = 4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Rebhan and D. Steineder, Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K.A. Mamo, Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma, JHEP 10 (2012) 070 [arXiv:1205.1797] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S.C. Huot, S. Jeon and G.D. Moore, Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD, Phys. Rev. Lett. 98 (2007) 172303 [hep-ph/0608062] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  11. V. Skokov, A.Y. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008)074033 [arXiv:0808.3382] [INSPIRE].

    ADS  Google Scholar 

  13. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions:event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [INSPIRE].

    ADS  Google Scholar 

  15. H.-U. Yee, Holographic chiral magnetic conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D.E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys. Rev. D 83 (2011) 085007 [arXiv:1012.6026] [INSPIRE].

    ADS  Google Scholar 

  18. G. Newman, Anomalous hydrodynamics, JHEP 01 (2006) 158 [hep-ph/0511236] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Landsteiner, E. Megias, L. Melgar and F. Pena-Benitez, Holographic gravitational anomaly and chiral vortical effect, JHEP 09 (2011) 121 [arXiv:1107.0368] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Basar and D.E. Kharzeev, The Chern-Simons diffusion rate in strongly coupled N = 4 SYM plasma in an external magnetic field, Phys. Rev. D 85 (2012) 086012 [arXiv:1202.2161] [INSPIRE].

    ADS  Google Scholar 

  21. G. Basar, D. Kharzeev, D. Kharzeev and V. Skokov, Conformal anomaly as a source of soft photons in heavy ion collisions, Phys. Rev. Lett. 109 (2012) 202303 [arXiv:1206.1334] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Bzdak and V. Skokov, Anisotropy of photon production: initial eccentricity or magnetic field, Phys. Rev. Lett. 110 (2013) 192301 [arXiv:1208.5502] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Tuchin, Electromagnetic radiation by quark-gluon plasma in magnetic field, Phys. Rev. C 87 (2013)024912 [arXiv:1206.0485] [INSPIRE].

    ADS  Google Scholar 

  24. D.E. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, ’Strongly interacting matter in magnetic fields: an overview, Lect. Notes Phys. 871 (2013) 1 [arXiv:1211.6245] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Turbide, C. Gale, E. Frodermann and U. Heinz, Electromagnetic radiation from nuclear collisions at RHIC energies, Phys. Rev. C 77 (2008) 024909 [arXiv:0712.0732] [INSPIRE].

    ADS  Google Scholar 

  26. J. Manninen, E. Bratkovskaya, W. Cassing and O. Linnyk, Dilepton production in p+p, Cu+Cu and Au+Au collisions at 200 AGeV, Eur. Phys. J. C 71 (2011) 1615 [arXiv:1005.0500] [INSPIRE].

    Article  ADS  Google Scholar 

  27. PHENIX collaboration, A. Adare et al., Enhanced production of direct photons in Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV and implications for the initial temperature, Phys. Rev. Lett. 104 (2010)132301 [arXiv:0804.4168] [INSPIRE].

    Article  ADS  Google Scholar 

  28. PHENIX collaboration, A. Adare et al., Detailed measurement of the e + e pair continuum in p + p and Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV and implications for direct photon production, Phys. Rev. C 81 (2010) 034911 [arXiv:0912.0244] [INSPIRE].

    ADS  Google Scholar 

  29. PHENIX collaboration, S. Adler et al., Centrality dependence of direct photon production in \( \sqrt{{{s_{NN }}}}=200 \) GeV Au + Au collisions, Phys. Rev. Lett. 94 (2005) 232301 [nucl-ex/0503003] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [INSPIRE].

    Article  ADS  Google Scholar 

  31. F.-M. Liu, T. Hirano, K. Werner and Y. Zhu, Centrality-dependent direct photon p T spectra in Au + Au collisions at RHIC, Phys. Rev. C 79 (2009) 014905 [arXiv:0807.4771] [INSPIRE].

    ADS  Google Scholar 

  32. R.J. Fries, B. Müller and D.K. Srivastava, Centrality dependence of direct photons in Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. C 72 (2005) 041902 [nucl-th/0507018] [INSPIRE].

    ADS  Google Scholar 

  33. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Jo and S.-J. Sin, Photo-emission rate of sQGP at finite density, Phys. Rev. D 83 (2011) 026004 [arXiv:1005.0200] [INSPIRE].

    ADS  Google Scholar 

  36. D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP 11 (2007) 025 [arXiv:0709.2168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Mas, J.P. Shock, J. Tarrio and D. Zoakos, Holographic spectral functions at finite baryon density, JHEP 09 (2008) 009 [arXiv:0805.2601] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].

    ADS  Google Scholar 

  39. B. Hassanain and M. Schvellinger, Plasma photoemission from string theory, JHEP 12 (2012)095 [arXiv:1209.0427] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Hassanain and M. Schvellinger, Plasma conductivity at finite coupling, JHEP 01 (2012) 114 [arXiv:1108.6306] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Baier, S.A. Stricker, O. Taanila and A. Vuorinen, Production of prompt photons: holographic duality and thermalization, Phys. Rev. D 86 (2012) 081901 [arXiv:1207.1116] [INSPIRE].

    ADS  Google Scholar 

  42. D. Steineder, S.A. Stricker and A. Vuorinen, Holographic thermalization at intermediate coupling, Phys. Rev. Lett. 110 (2013) 101601 [arXiv:1209.0291] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Patino and D. Trancanelli, Thermal photon production in a strongly coupled anisotropic plasma, JHEP 02 (2013) 154 [arXiv:1211.2199] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Rebhan and D. Steineder, Electromagnetic signatures of a strongly coupled anisotropic plasma, JHEP 08 (2011) 153 [arXiv:1106.3539] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  46. S.-J. Sin and Y. Zhou, Holographic wilsonian RG Flow and Sliding membrane paradigm, JHEP 05 (2011) 030 [arXiv:1102.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  47. P. Buividovich et al., Magnetic-field-induced insulator-conductor transition in SU(2) quenched lattice gauge theory, Phys. Rev. Lett. 105 (2010) 132001 [arXiv:1003.2180] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M.I. Polikarpov et al., Conductivity of SU(2) gluodynamics vacuum induced by magnetic field, AIP Conf. Proc. 1343 (2011) 630 [INSPIRE].

    Article  ADS  Google Scholar 

  49. W.-T. Deng and X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions, Phys. Rev. C 85 (2012) 044907 [arXiv:1201.5108] [INSPIRE].

    ADS  Google Scholar 

  50. A. Czajka and S. Mrowczynski, N = 4 super Yang-Mills plasma, Phys. Rev. D 86 (2012) 025017 [arXiv:1203.1856] [INSPIRE].

    ADS  Google Scholar 

  51. E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  52. E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. S.-i. Nam, Electrical conductivity of quark matter at finite T under external magnetic field, Phys. Rev. D 86 (2012) 033014 [arXiv:1207.3172] [INSPIRE].

    ADS  Google Scholar 

  54. B. Kerbikov and M. Andreichikov, Dense quark matter conductivity in ultra-intense magnetic field, JETP Lett. 96 (2012) 361 [arXiv:1206.6044] [INSPIRE].

    Article  ADS  Google Scholar 

  55. K. Tuchin, Photon decay in strong magnetic field in heavy-ion collisions, Phys. Rev. C 83 (2011)017901 [arXiv:1008.1604] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiminad A. Mamo.

Additional information

ArXiv ePrint: 1210.7428

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamo, K.A. Enhanced thermal photon and dilepton production in strongly coupled \( \mathcal{N} \) = 4 SYM plasma in strong magnetic field. J. High Energ. Phys. 2013, 83 (2013). https://doi.org/10.1007/JHEP08(2013)083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)083

Keywords

Navigation