Skip to main content
Log in

A preferred ground state for the scalar field in de Sitter space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate a recent proposal for a distinguished vacuum state of a free scalar quantum field in an arbitrarily curved spacetime, known as the Sorkin-Johnston (SJ) vacuum, by applying it to de Sitter space. We derive the associated two-point functions on both the global and Poincaré (cosmological) patches in general d + 1 dimensions. In all cases where it is defined, the SJ vacuum belongs to the family of de Sitter invariant α-vacua. We obtain different states depending on the spacetime dimension, mass of the scalar field, and whether the state is evaluated on the global or Poincaré patch. We find that the SJ vacuum agrees with the Euclidean/Bunch-Davies state for heavy (“principal series”) fields on the global patch in even spacetime dimensions. We also compute the SJ vacuum on a causal set corresponding to a causal diamond in 1 + 1 dimensional de Sitter space. Our simulations show that the mean of the SJ two-point function on the causal set agrees well with its expected continuum counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].

  2. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time, Phys. Rev. D 7 (1973) 2850 [INSPIRE].

    ADS  Google Scholar 

  3. P. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A 8 (1975) 609 [INSPIRE].

    ADS  Google Scholar 

  4. W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  5. V.F. Mukhanov, H. Feldman and R.H. Brandenberger, Theory of cosmological perturbations, Phys. Rept. 215 (1992) 203 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Allen, Vacuum States in de Sitter Space, Phys. Rev. D 32 (1985) 3136 [INSPIRE].

    ADS  Google Scholar 

  7. R.M. Wald, The Formulation of Quantum Field Theory in Curved Spacetime, arXiv:0907.0416 [INSPIRE].

  8. N. Afshordi, S. Aslanbeigi and R.D. Sorkin, A Distinguished Vacuum State for a Quantum Field in a Curved Spacetime: Formalism, Features and Cosmology, JHEP 08 (2012) 137 [arXiv:1205.1296] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Johnston, Particle propagators on discrete spacetime, Class. Quant. Grav. 25 (2008) 202001 [arXiv:0806.3083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Johnston, Feynman Propagator for a Free Scalar Field on a Causal Set, Phys. Rev. Lett. 103 (2009) 180401 [arXiv:0909.0944] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. C.J. Fewster and R. Verch, On a Recent Construction ofVacuum-likeQuantum Field States in Curved Spacetime, Class. Quant. Grav. 29 (2012) 205017 [arXiv:1206.1562] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Afshordi et al., A Ground State for the Causal Diamond in 2 Dimensions, JHEP 10 (2012) 088 [arXiv:1207.7101] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J.P. Gazeau, An introduction to quantum field theory in de Sitter space-time, AIP Conf. Proc. 910 (2007) 218 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Hawking and G. Ellis, The large scale structure of space-time. Volume 1, Cambridge University Press, (1975).

  15. R.E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. Lond. A 214 (1952) 143 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Reed and B. Simon, Methods of Modern Mathematical Physics. Volume I: Functional Analysis, Academic Press, (1981).

  17. T. Bunch and P. Davies, Quantum field theory in de sitter space: renormalization by point-splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117.

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Mottola, Particle Creation in de Sitter Space, Phys. Rev. D 31 (1985) 754 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. E. Tagirov, Consequences of field quantization in de Sitter type cosmological models, Annals Phys. 76 (1973) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Bros, H. Epstein and U. Moschella, Lifetime of a massive particle in a de Sitter universe, JCAP 02 (2008) 003 [hep-th/0612184] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. P. Lagogiannis, A. Maloney and Y. Wang, Odd-dimensional de Sitter Space is Transparent, arXiv:1106.2846 [INSPIRE].

  23. S.P. Johnston, Quantum Fields on Causal Sets, arXiv:1010.5514 [INSPIRE].

  24. J. Henson, The causal set approach to quantum gravity, gr-qc/0601121 [INSPIRE].

  25. R. Ilie, G.B. Thompson and D.D. Reid, A numerical study of the correspondence between paths in a causal set and geodesics in the continuum, Class. Quant. Grav. 23 (2006) 3275 [gr-qc/0512073] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Fukuma, Y. Sakatani and S. Sugishita, On propagators in de Sitter space, Phys. Rev. D 88, 024041 (2013) [arXiv:1301.7352] [INSPIRE].

    ADS  Google Scholar 

  27. D. Marolf and I.A. Morrison, The IR stability of de Sitter: Loop corrections to scalar propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].

    ADS  Google Scholar 

  28. D.P. Jatkar, L. Leblond and A. Rajaraman, On the Decay of Massive Fields in de Sitter, Phys. Rev. D 85 (2012) 024047 [arXiv:1107.3513] [INSPIRE].

    ADS  Google Scholar 

  29. D. Marolf, I.A. Morrison and M. Srednicki, Perturbative S-matrix for massive scalar fields in global de Sitter space, Class. Quant. Grav. 30, 155023 (2013) [arXiv:1209.6039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Bros, H. Epstein and U. Moschella, Particle decays and stability on the de Sitter universe, Annales Henri Poincaré 11 (2010) 611 [arXiv:0812.3513] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. R. Brunetti and K. Fredenhagen, Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds, Commun. Math. Phys. 208 (2000) 623 [math-ph/9903028] [INSPIRE].

  32. S. Hollands and R.M. Wald, Local Wick polynomials and time ordered products of quantum fields in curved space-time, Commun. Math. Phys. 223 (2001) 289 [gr-qc/0103074] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S. Hollands and R.M. Wald, Existence of local covariant time ordered products of quantum fields in curved space-time, Commun. Math. Phys. 231 (2002) 309 [gr-qc/0111108] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. R. Brunetti, K. Fredenhagen and S. Hollands, A remark on alpha vacua for quantum field theories on de Sitter space, JHEP 05 (2005) 063 [hep-th/0503022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. Planck collaboration, P. Ade et al., Planck 2013 results. XV. CMB power spectra and likelihood, arXiv:1303.5075 [INSPIRE].

  36. H. Schmidt, On the de Sitter space-time: The geometric foundation of inflationary cosmology, Fortsch. Phys. 41 (1993) 179 [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007 [INSPIRE].

  38. F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions. Cambridge University Press, New York, NY, U.S.A. (2010).

    MATH  Google Scholar 

  39. E. Tagirov, Consequences of field quantization in de Sitter type cosmological models, Annals Phys. 76 (1973) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  40. P. Candelas and D. Raine, Quantum Field Theory in Incomplete Manifolds, J. Math. Phys. 17 (1976) 2101 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simulat. 8 (1998) 3.

    Article  MATH  Google Scholar 

  42. B. Schmitzer, Curvature And Topology On Causal Sets, F. Dowker supervisor, MSc Thesis, Imperial College London, London U.K. (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Buck.

Additional information

ArXiv ePrint: 1306.3231

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslanbeigi, S., Buck, M. A preferred ground state for the scalar field in de Sitter space. J. High Energ. Phys. 2013, 39 (2013). https://doi.org/10.1007/JHEP08(2013)039

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)039

Keywords

Navigation