Skip to main content
Log in

Light MSSM Higgs boson mass to three-loop accuracy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The light CP even Higgs boson mass, M h , is calculated to three-loop accuracy within the Minimal Supersymmetric Standard Model (MSSM). The result is expressed in terms of \( \overline {\text{DR}} \) parameters and implemented in the computer program H3m. The calculation is based on the proper approximations and their combination in various regions of the parameter space. The three-loop effects to M h are typically of the order of a few hundred MeV and opposite in sign to the two-loop corrections. The remaining theory uncertainty due to higher order perturbative corrections is estimated to be less than 1 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [SPIRES].

    Article  ADS  Google Scholar 

  2. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [SPIRES].

    Article  ADS  Google Scholar 

  3. S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [SPIRES].

    Article  ADS  Google Scholar 

  4. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [SPIRES].

    ADS  Google Scholar 

  5. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [SPIRES].

    ADS  Google Scholar 

  6. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [SPIRES].

    Article  ADS  Google Scholar 

  7. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [SPIRES].

    ADS  Google Scholar 

  9. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [SPIRES].

    Article  ADS  Google Scholar 

  10. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [SPIRES].

    ADS  Google Scholar 

  12. M.S. Carena, J.R. Ellis, A. Pilaftsis and C.E.M. Wagner, Renormalization-group-improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [SPIRES].

    Article  ADS  Google Scholar 

  13. S.P. Martin, Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [SPIRES].

    ADS  Google Scholar 

  14. S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [SPIRES].

    ADS  Google Scholar 

  15. R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Erratum ibid. 101 (2008) 039901] [arXiv:0803.0672] [SPIRES].

    Article  ADS  Google Scholar 

  16. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  17. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [SPIRES].

    ADS  Google Scholar 

  18. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [SPIRES].

    ADS  Google Scholar 

  19. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs: a program for the calculation of MSSM Higgs-boson observables — version 2.6.5, Comput. Phys. Commun. 180 (2009) 1426 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  20. J.S. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C.E.M. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [SPIRES].

    Article  ADS  Google Scholar 

  22. B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, in Proceedings of the APS/DPF/DPB summer study on the future of particle physics (Snowmass 2001), N. Graf ed., Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].

    Article  ADS  Google Scholar 

  23. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [SPIRES].

    Article  ADS  Google Scholar 

  24. P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Results for the paper: “Light MSSM Higgs boson mass to three-loop accuracy”, http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp10/ttp10-23/.

  25. FeynHiggs: overview, http://www.feynhiggs.de/.

  26. P.H. Chankowski, S. Pokorski and J. Rosiek, Charged and neutral supersymmetric Higgs boson masses: complete one loop analysis, Phys. Lett. B 274 (1992) 191 [SPIRES].

    ADS  Google Scholar 

  27. A. Brignole, Radiative corrections to the supersymmetric neutral Higgs boson masses, Phys. Lett. B 281 (1992) 284 [SPIRES].

    ADS  Google Scholar 

  28. A. Dabelstein, The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [SPIRES].

    ADS  Google Scholar 

  29. G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [SPIRES].

    Article  ADS  Google Scholar 

  30. B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  31. Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B 622 (2005) 124 [hep-ph/0504055] [SPIRES].

    ADS  Google Scholar 

  32. K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhöfer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003 [hep-ph/0605201] [SPIRES].

    Article  ADS  Google Scholar 

  33. R. Boughezal and M. Czakon, Single scale tadpoles and \( \mathcal{O}\left( {{G_F}m_t^2\alpha_s^3} \right) \) corrections to the ρ parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232] [SPIRES].

    Article  ADS  Google Scholar 

  34. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. R.V. Harlander, L. Mihaila and M. Steinhauser, The SUSY -QCD β-function to three loops, Eur. Phys. J. C 63 (2009) 383 [arXiv:0905.4807] [SPIRES].

    Article  ADS  Google Scholar 

  36. A. Denner, H. Eck, O. Hahn and J. Küblbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [SPIRES].

    Article  ADS  Google Scholar 

  37. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

  38. R. Harlander, T. Seidensticker and M. Steinhauser, Corrections of O(αα s ) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [SPIRES].

    ADS  Google Scholar 

  39. T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [SPIRES].

  40. V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [SPIRES].

    Article  ADS  Google Scholar 

  41. M. Steinhauser, MATAD: a program package for the computation of massive tadpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  42. P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].

    Article  ADS  Google Scholar 

  43. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  44. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].

    Article  ADS  Google Scholar 

  45. S.P. Martin, Fermion self-energies and pole masses at two-loop order in a general renormalizable theory with massless gauge bosons, Phys. Rev. D 72 (2005) 096008 [hep-ph/0509115] [SPIRES].

    ADS  Google Scholar 

  46. S.P. Martin and D.G. Robertson, TSIL: a program for the calculation of two-loop self-energy integrals, Comput. Phys. Commun. 174 (2006) 133 [hep-ph/0501132] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  47. Tevatron Electroweak Working Group collaboration, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [SPIRES].

  48. R. Harlander, L. Mihaila and M. Steinhauser, Two-loop matching coefficients for the strong coupling in the MSSM, Phys. Rev. D 72 (2005) 095009 [hep-ph/0509048] [SPIRES].

    ADS  Google Scholar 

  49. R.V. Harlander, L. Mihaila and M. Steinhauser, Running of α s and m b in the MSSM, Phys. Rev. D 76 (2007) 055002 [arXiv:0706.2953] [SPIRES].

    ADS  Google Scholar 

  50. A. Bauer, L. Mihaila and J. Salomon, Matching coefficients for α s and m b to O(α s 2 ) in the MSSM, JHEP 02 (2009) 037 [arXiv:0810.5101] [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Bethke, The 2009 world average of α s (M Z ), Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [SPIRES].

    Article  ADS  Google Scholar 

  52. T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [SPIRES].

    ADS  Google Scholar 

  53. M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [SPIRES].

    Article  ADS  Google Scholar 

  54. I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [SPIRES].

    ADS  Google Scholar 

  55. M.S. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [SPIRES].

    ADS  Google Scholar 

  56. M.S. Carena et al., Reconciling the two-loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [SPIRES].

    Article  ADS  Google Scholar 

  57. I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Decoupling of the ϵ scalar mass in softly broken supersymmetry, Phys. Rev. D 50 (1994) 5481 [hep-ph/9407291] [SPIRES].

    ADS  Google Scholar 

  58. S.P. Martin, Two-loop effective potential for a general renormalizable theory and softly broken supersymmetry, Phys. Rev. D 65 (2002) 116003 [hep-ph/0111209] [SPIRES].

    ADS  Google Scholar 

  59. I. Jack and D.R.T. Jones, Soft supersymmetry breaking and finiteness, Phys. Lett. B 333 (1994) 372 [hep-ph/9405233] [SPIRES].

    ADS  Google Scholar 

  60. Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [SPIRES].

    ADS  Google Scholar 

  61. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].

    ADS  Google Scholar 

  62. D.R.T. Jones and L. Mezincescu, The β-function in supersymmetric Yang-Mills theory, Phys. Lett. B 136 (1984) 242 [SPIRES].

    ADS  Google Scholar 

  63. D.R.T. Jones and L. Mezincescu, The chiral anomaly and a class of two loop finite supersymmetric gauge theories, Phys. Lett. B 138 (1984) 293 [SPIRES].

    ADS  Google Scholar 

  64. A.J. Parkes and P.C. West, Three loop results in two loop finite supersymmetric gauge theories, Nucl. Phys. B 256 (1985) 340 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Harlander.

Additional information

ArXiv ePrint: 1005.5709

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kant, P., Harlander, R.V., Mihaila, L. et al. Light MSSM Higgs boson mass to three-loop accuracy. J. High Energ. Phys. 2010, 104 (2010). https://doi.org/10.1007/JHEP08(2010)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)104

Keywords

Navigation