Skip to main content
Log in

Counting defects with the two-point correlator

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z 2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W.B. Kibble, Topology Of Cosmic Domains And Strings, J. Phys. A 9 (1976) 1387.

    ADS  Google Scholar 

  2. W.H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505 [SPIRES].

    Article  ADS  Google Scholar 

  3. A. Rajantie, Formation of topological defects in gauge field theories, Int. J. Mod. Phys. A 17 (2002) 1 [hep-ph/0108159] [SPIRES].

    ADS  Google Scholar 

  4. I. Chuang, B. Yurke, R. Durrer and N. Turok Science 251 (1991) 1336 [SPIRES].

    Article  ADS  Google Scholar 

  5. M.J. Bowick, L. Chandar, E.A. Schiff and A.M. Srivastava, The Cosmological Kibble mechanism in the laboratory: String formation in liquid crystals, Science 263 (1994) 943 [hep-ph/9208233] [SPIRES].

    Article  ADS  Google Scholar 

  6. C. Baeuerle, Y.M. Bunkov, S.N. Fisher, H. Godfrin and G.R. Pickett, Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3, Nature 382 (1996) 332 [SPIRES].

    Article  ADS  Google Scholar 

  7. V.M.H. Ruutu et al., Big bang simulation in superfluid 3He-B – Vortex nucleation in neutron-irradiated superflow, Nature 382 (1996) 334 [cond-mat/9512117] [SPIRES].

    Article  ADS  Google Scholar 

  8. S. Digal, R. Ray and A.M. Srivastava, Observing Correlated Production of Defects-Antidefects in Liquid Crystals, Phys. Rev. Lett. 83 (1999) 5030 [hep-ph/9805502] [SPIRES].

    Article  ADS  Google Scholar 

  9. S. Ducci et al., Order Parameter Fragmentation after a Symmetry-Breaking Transition, Phys. Rev. Lett. 83 (1999) 5210.

    Article  ADS  Google Scholar 

  10. S. Casado, Topological defects after a quench in a Bénard-Marangoni convection system, Phys. Rev. E 63 (2001) 057301.

    ADS  Google Scholar 

  11. A. Maniv, E. Polturak and G. Koren, Observation of Magnetic Flux Generated Spontaneously During a Rapid Quench of Superconducting Films, Phys. Rev. Lett. 91 (2003) 197001 [SPIRES].

    Article  ADS  Google Scholar 

  12. J.R. Kirtley, C.C. Tsuei and F. Tafuri, Thermally Activated Spontaneous Fluxoid Formation in Superconducting Thin Film Rings, Phys. Rev. Lett. 90 (2003) 257001.

    Article  ADS  Google Scholar 

  13. R. Monaco et al., Experiments on spontaneous vortex formation in Josephson tunnel junctions, Phys. Rev. B74 (2006) 144513.

    ADS  Google Scholar 

  14. N.D. Antunes and L.M.A. Bettencourt, Out of equilibrium dynamics of a quench-induced phase transition and topological defect formation, Phys. Rev. D 55 (1997) 925 [hep-ph/9605277] [SPIRES].

    ADS  Google Scholar 

  15. P. Laguna and W.H. Zurek, Density of kinks after a quench: When symmetry breaks, how big are the pieces?, Phys. Rev. Lett. 78 (1997) 2519 [gr-qc/9607041] [SPIRES].

    Article  ADS  Google Scholar 

  16. P. Laguna and W.H. Zurek, Critical dynamics of symmetry breaking: Quenches, dissipation and cosmology, Phys. Rev. D 58 (1998) 085021 [hep-ph/9711411] [SPIRES].

    ADS  Google Scholar 

  17. N.D. Antunes, L.M.A. Bettencourt and W.H. Zurek, Vortex string formation in a 3D U(1) temperature quench, Phys. Rev. Lett. 82 (1999) 2824 [hep-ph/9811426] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Yates and W.H. Zurek, Vortex formation in two dimensions: When symmetry breaks, how big are the pieces?, Phys. Rev. Lett. 80 (1998) 5477 [hep-ph/9801223] [SPIRES].

    Article  ADS  Google Scholar 

  19. M. Hindmarsh and A. Rajantie, Defect formation and local gauge invariance, Phys. Rev. Lett. 85 (2000) 4660 [cond-mat/0007361] [SPIRES].

    Article  ADS  Google Scholar 

  20. A.J. Gill and R.J. Rivers, The Dynamics of vortex and monopole production by quench induced phase separation, Phys. Rev. D 51 (1995) 6949 [hep-th/9410159] [SPIRES].

    ADS  Google Scholar 

  21. G. Karra and R.J. Rivers, The Densities, Correlations and Length Distributions of Vortices Produced at a Gaussian Quench, hep-ph/9603413 [SPIRES].

  22. G.D. Lythe, Domain formation in transitions with noise and a time-dependent bifurcation parameter, Phys. Rev. E 53 (1996) R4271.

    ADS  Google Scholar 

  23. M. Uhlmann, R. Schutzhold and U.R. Fischer, O(N) symmetry-breaking quantum quench: Topological defects versus quasiparticles, Phys. Rev. D 81 (2010) 025017 [SPIRES].

    ADS  Google Scholar 

  24. D. Boyanovsky, D.-s. Lee and A. Singh, Phase transitions out-of-equilibrium: Domain formation and growth, Phys. Rev. D 48 (1993) 800 [hep-th/9212083] [SPIRES].

    ADS  Google Scholar 

  25. G.J. Stephens, E.A. Calzetta, B.L. Hu and S.A. Ramsey, Defect formation and critical dynamics in the early universe, Phys. Rev. D 59 (1999) 045009 [gr-qc/9808059] [SPIRES].

    ADS  Google Scholar 

  26. B. Halperin, Statistical mechanics of topological defects, in Physics of Defects, eds. R. Balian, M. Kleman and J.P. Poiries, North-Holland, New York U.S.A. (1981).

    Google Scholar 

  27. F. Liu and G.F. Mazenko, Defect-defect correlation in the dynamics of first-order phase transitions, Phys. Rev. B 46 (1992) 5963 [SPIRES].

    ADS  Google Scholar 

  28. D. Ibaceta and E. Calzetta, Counting defects in an instantaneous quench, Phys. Rev. E 60 (1999) 2999 [hep-ph/9810301] [SPIRES].

    ADS  Google Scholar 

  29. A. Rajantie and A. Tranberg, Looking for defects in the 2PI correlator, JHEP 11 (2006) 020 [hep-ph/0607292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. R.D. Blundell and A.J. Bray, Phase ordering dynamics of the o(n) model-exact predictions and numerical results, cond-mat/9310075.

  31. S.Y. Khlebnikov and I.I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett. 77 (1996) 219 [hep-ph/9603378] [SPIRES].

    Article  ADS  Google Scholar 

  32. J. Smit, J.C. Vink and M. Salle, Initial conditions for simulated ’tachyonic preheating’ and the Hartree ensemble approximation, hep-ph/0112057 [SPIRES].

  33. J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [SPIRES].

    ADS  Google Scholar 

  34. A. Arrizabalaga, J. Smit and A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation, JHEP 10 (2004) 017 [hep-ph/0409177] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Rajantie and D.J. Weir, Soliton form factors from lattice simulations, arXiv:1006.2410 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Tranberg.

Additional information

ArXiv ePrint: 1005.0269

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajantie, A., Tranberg, A. Counting defects with the two-point correlator. J. High Energ. Phys. 2010, 86 (2010). https://doi.org/10.1007/JHEP08(2010)086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)086

Keywords

Navigation