Skip to main content
Log in

Thermodynamic instability of doubly spinning black objects

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the thermodynamic stability of neutral black objects with (at least) two angular momenta. We use the quasilocal formalism to compute the grand canonical potential and show that the doubly spinning black ring is thermodynamically unstable. We consider the thermodynamic instabilities of ultra-spinning black objects and point out a subtle relation between the microcanonical and grand canonical ensembles. We also find the location of the black string/ membrane phases of doubly spinning black objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Rodriguez, On the black hole species (by means of natural selection), arXiv:1003.2411 [SPIRES].

  2. G.J. Galloway and R. Schoen, A generalization of Hawking’s black hole topology theorem to higher dimensions, Commun. Math. Phys. 266 (2006) 571 [gr-qc/0509107] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. S. Hollands, A. Ishibashi and R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. A.A. Pomeransky and R.A. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [SPIRES].

  6. R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. D. Astefanesei, R.B. Mann, M.J. Rodriguez and C. Stelea, Quasilocal formalism and thermodynamics of asymptotically flat black objects, Class. Quant. Grav. 27 (2010) 165004 [arXiv:0909.3852] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [SPIRES].

    ADS  Google Scholar 

  11. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. S.R. Lau, Lightcone reference for total gravitational energy, Phys. Rev. D 60 (1999) 104034 [gr-qc/9903038] [SPIRES].

    ADS  Google Scholar 

  14. R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [SPIRES].

    ADS  Google Scholar 

  15. P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat spacetimes, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. B. Kleihaus, J. Kunz and E. Radu, New nonuniform black string solutions, JHEP 06 (2006) 016 [hep-th/0603119] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. D. Astefanesei, M.J. Rodriguez and S. Theisen, Quasilocal equilibrium condition for black ring, JHEP 12 (2009) 040 [arXiv:0909.0008] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. D. Astefanesei and E. Radu, Quasilocal formalism and black ring thermodynamics, Phys. Rev. D 73 (2006) 044014 [hep-th/0509144] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. J.D. Brown, E.A. Martinez and J.W. York, Jr., Complex Kerr-Newman geometry and black hole thermodynamics, Phys. Rev. Lett. 66 (1991) 2281 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. H. Elvang, R. Emparan and A. Virmani, Dynamics and stability of black rings, JHEP 12 (2006) 074 [hep-th/0608076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Monteiro, M.J. Perry and J.E. Santos, Thermodynamic instability of rotating black holes, Phys. Rev. D 80 (2009) 024041 [arXiv:0903.3256] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. D.N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7 (2005) 203 [hep-th/0409024] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. O.J.C. Dias, P. Figueras, R. Monteiro, H.S. Reall and J.E. Santos, An instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076 [arXiv:1001.4527] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67 (1995) 605 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.S. Gubser and I. Mitra, The evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. H.S. Reall, Classical and thermodynamic stability of black branes, Phys. Rev. D 64 (2001) 044005 [hep-th/0104071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. R.B. Mann, D. Marolf and A. Virmani, Covariant counterterms and conserved charges in asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 6357 [gr-qc/0607041] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. D. Astefanesei, R.B. Mann and C. Stelea, Note on counterterms in asymptotically flat spacetimes, Phys. Rev. D 75 (2007) 024007 [hep-th/0608037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. H. Elvang and M.J. Rodriguez, Bicycling black rings, JHEP 04 (2008) 045 [arXiv:0712.2425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Durkee, Geodesics and Symmetries of Doubly-Spinning Black Rings, Class. Quant. Grav. 26 (2009) 085016 [arXiv:0812.0235] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. P.T. Chrusciel, J. Cortier and A. G.-P. Gomez-Lobo, On the global structure of the Pomeransky-Senkov black holes, arXiv:0911.0802 [SPIRES].

  34. M. Ba˜nados, C. Teitelboim and J. Zanelli, Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem, Phys. Rev. Lett. 72 (1994) 957 [gr-qc/9309026] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. J. Evslin and C. Krishnan, Metastable black saturns, JHEP 09 (2008) 003 [arXiv:0804.4575] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. J.E. Aman and N. Pidokrajt, Geometry of higher-dimensional black hole thermodynamics, Phys. Rev. D 73 (2006) 024017 [hep-th/0510139] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Arcioni and E. Lozano-Tellechea, Stability and critical phenomena of black holes and black rings, Phys. Rev. D 72 (2005) 104021 [hep-th/0412118] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. S. Lahiri and S. Minwalla, Plasmarings as dual black rings, JHEP 05 (2008) 001 [arXiv:0705.3404] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Astefanesei and H. Yavartanoo, Stationary black holes and attractor mechanism, Nucl. Phys. B 794 (2008) 13 [arXiv:0706.1847] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. H.B. Callen, Thermodynamics and an introduction to thermostatistics, John Willey Sons (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Astefanesei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astefanesei, D., Rodriguez, M.J. & Theisen, S. Thermodynamic instability of doubly spinning black objects. J. High Energ. Phys. 2010, 46 (2010). https://doi.org/10.1007/JHEP08(2010)046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)046

Keywords

Navigation