Skip to main content
Log in

Thermodynamics of large N gauge theories with chemical potentials in a 1/D expansion

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1 + D dimensional SU(N) Yang-Mills theory and we use a 1/D expansion to investigate the phase structure. We find three phases in the μT plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D → ∞ limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than 4, there is a critical chemical potential and the condensation happens only if the chemical potentials are below it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, Thermodynamics of spinning D3-branes, Nucl. Phys. B 551 (1999) 667 [hep-th/9810225] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. T. Harmark and N.A. Obers, Thermodynamics of spinning branes and their dual field theories, JHEP 01 (2000) 008 [hep-th/9910036] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  5. T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [SPIRES].

    Article  ADS  Google Scholar 

  6. P. Basu et al., Small hairy black holes in global AdS spacetime, arXiv:1003.3232 [SPIRES].

  7. S. Bhattacharyya, S. Minwalla and K. Papadodimas, Small hairy black holes in AdS 5 × S 5, arXiv:1005.1287 [SPIRES].

  8. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  9. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  11. R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [SPIRES].

    Google Scholar 

  12. P. Basu and S.R. Wadia, R-charged AdS 5 black holes and large-N unitary matrix models, Phys. Rev. D 73 (2006) 045022 [hep-th/0506203] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. D. Yamada and L.G. Yaffe, Phase diagram of N = 4 super-Yang-Mills theory with R-symmetry chemical potentials, JHEP 09 (2006) 027 [hep-th/0602074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Harmark and M. Orselli, Quantum mechanical sectors in thermal N = 4 super Yang-Mills on R × S 3, Nucl. Phys. B 757 (2006) 117 [hep-th/0605234] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Harmark and M. Orselli, Matching the Hagedorn temperature in AdS/CFT, Phys. Rev. D 74 (2006) 126009 [hep-th/0608115] [SPIRES].

    ADS  Google Scholar 

  16. T. Harmark, K.R. Kristjansson and M. Orselli, Magnetic Heisenberg-chain/pp-wave correspondence, JHEP 02 (2007) 085 [hep-th/0611242] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. T.K. Dey, S. Mukherji, S. Mukhopadhyay and S. Sarkar, Phase transitions in higher derivative gravity and gauge theory: R-charged black holes, JHEP 09 (2007) 026 [arXiv:0706.3996] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Harmark, K.R. Kristjansson and M. Orselli, Decoupling limits of N = 4 super Yang-Mills on R × S 3, JHEP 09 (2007) 115 [arXiv:0707.1621] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. T.J. Hollowood, S.P. Kumar, A. Naqvi and P. Wild, N = 4 SYM on S 3 with near critical chemical potentials, JHEP 08 (2008) 046 [arXiv:0803.2822] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Murata, T. Nishioka, N. Tanahashi and H. Yumisaki, Phase transitions of charged Kerr-AdS black holes from large-N gauge theories, Prog. Theor. Phys. 120 (2008) 473 [arXiv:0806.2314] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  21. D. Elander, Phase structure of beta-deformed N = 4 SYM on S 3 with chemical potentials, Phys. Rev. D 79 (2009) 086008 [arXiv:0809.0687] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [SPIRES].

    Article  ADS  Google Scholar 

  23. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. M. Cvetič and D. Youm, Rotating intersecting M-branes, Nucl. Phys. B 499 (1997) 253 [hep-th/9612229] [SPIRES].

    Article  ADS  Google Scholar 

  25. C. Csáki, Y. Oz, J. Russo and J. Terning, Large-N QCD from rotating branes, Phys. Rev. D 59 (1999) 065012 [hep-th/9810186] [SPIRES].

    ADS  Google Scholar 

  26. S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, JHEP 03 (1999) 003 [hep-th/9811120] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Cvetič and S.S. Gubser, Phases of R-charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [SPIRES].

    Article  ADS  Google Scholar 

  29. M. Cvetič and S.S. Gubser, Thermodynamic stability and phases of general spinning branes, JHEP 07 (1999) 010 [hep-th/9903132] [SPIRES].

    Article  ADS  Google Scholar 

  30. S.W. Hawking and H.S. Reall, Charged and rotating AdS black holes and their CFT duals, Phys. Rev. D 61 (2000) 024014 [hep-th/9908109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. O. Aharony et al., The phase structure of low dimensional large-N gauge theories on tori, JHEP 01 (2006) 140 [hep-th/0508077] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Mandal, M. Mahato and T. Morita, Phases of one dimensional large-N gauge theory in a 1/D expansion, JHEP 02 (2010) 034 [arXiv:0910.4526] [SPIRES].

    Article  ADS  Google Scholar 

  33. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B 604 (2001) 121 [hep-th/0101102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Hotta, J. Nishimura and A. Tsuchiya, Dynamical aspects of large-N reduced models, Nucl. Phys. B 545 (1999) 543 [hep-th/9811220] [SPIRES].

    Article  ADS  Google Scholar 

  36. P. Basu, G. Mandal, T. Morita and S.R. Wadia, work in progress.

  37. H.E. Haber and H.A. Weldon, Finite temperature symmetry breaking as Bose-Einstein condensation, Phys. Rev. D 25 (1982) 502 [SPIRES].

    ADS  Google Scholar 

  38. O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1 + 1-dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav. 21 (2004) 5169 [hep-th/0406210] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. N. Kawahara, J. Nishimura and S. Takeuchi, Phase structure of matrix quantum mechanics at finite temperature, JHEP 10 (2007) 097 [arXiv:0706.3517] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Azuma, P. Basu and S.R. Wadia, Monte Carlo studies of the GW W phase transition in large-N gauge theories, Phys. Lett. B 659 (2008) 676 [arXiv:0710.5873] [SPIRES].

    ADS  Google Scholar 

  41. T. Azeyanagi, M. Hanada, T. Hirata and H. Shimada, On the shape of a D-brane bound state and its topology change, JHEP 03 (2009) 121 [arXiv:0901.4073] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn/deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  43. L. Álvarez-Gaumé, C. Gomez, H. Liu and S. Wadia, Finite temperature effective action, AdS 5 black holes and 1/N expansion, Phys. Rev. D 71 (2005) 124023 [hep-th/0502227] [SPIRES].

    ADS  Google Scholar 

  44. D.J. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [SPIRES].

    ADS  Google Scholar 

  45. S.R. Wadia, N = ∞ phase transition in a class of exactly soluble model lattice gauge theories, Phys. Lett. B 93 (1980) 403 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. O.J.C. Dias, P. Figueras, R. Monteiro, J.E. Santos and R. Emparan, Instability and new phases of higher-dimensional rotating black holes, Phys. Rev. D 80 (2009) 111701 [arXiv:0907.2248] [SPIRES].

    ADS  Google Scholar 

  47. V.A. Kazakov, I.K. Kostov and N.A. Nekrasov, D-particles, matrix integrals and KP hierarchy, Nucl. Phys. B 557 (1999) 413 [hep-th/9810035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. G. Ishiki, S. Shimasaki and A. Tsuchiya, A novel large-N reduction on S 3 : demonstration in Chern-Simons theory, Nucl. Phys. B 834 (2010) 423 [arXiv:1001.4917] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. D.P. Jatkar, G. Mandal, S.R. Wadia and K.P. Yogendran, Matrix dynamics of fuzzy spheres, JHEP 01 (2002) 039 [hep-th/0110172] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. Y. Kimura, Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model, Prog. Theor. Phys. 106 (2001) 445 [hep-th/0103192] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  51. T. Azuma, S. Bal, K. Nagao and J. Nishimura, Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term, JHEP 05 (2004) 005 [hep-th/0401038] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Morita.

Additional information

ArXiv ePrint: 1005.2181

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, T. Thermodynamics of large N gauge theories with chemical potentials in a 1/D expansion. J. High Energ. Phys. 2010, 15 (2010). https://doi.org/10.1007/JHEP08(2010)015

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)015

Keywords

Navigation