Skip to main content
Log in

All exact solutions of non-Abelian vortices from Yang-Mills instantons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We successfully exhaust the complete set of exact solutions of non-Abelian vortices in a quiver gauge theory, that is, the S[U(N) × U(N)] gauge theory with a bifudamental scalar field on a hyperbolic plane with a certain curvature, from SO(3)-invariant SU(2N) Yang-Mills instanton solutions. This work provides, for the first time, exact nonAbelian vortex solutions. We establish the ADHM construction for non-Abelian vortices and identify all the moduli parameters and the complete moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Non-Abelian superconductors: vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Eto et al., Non-Abelian vortices of higher winding numbers, Phys. Rev. D 74 (2006) 065021 [hep-th/0607070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. D. Tong, TASI lectures on solitons: instantons, monopoles, vortices and kinks, hep-th/0509216 [INSPIRE].

  6. D. Tong, Quantum vortex strings: a review, Annals Phys. 324 (2009) 30 [arXiv:0809.5060] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. M. Shifman and A. Yung, Supersymmetric solitons and how they help us understand non-Abelian gauge theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Shifman and A. Yung, Supersymmetric solitons, Cambridge Univ. Pr., Cambridge U.K. (2009).

  10. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [Zh. Eksp. Teor. Fiz. 32 (1957) 1442] [INSPIRE].

    Google Scholar 

  11. H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Balachandran, S. Digal and T. Matsuura, Semi-superfluid strings in high density QCD, Phys. Rev. D 73 (2006) 074009 [hep-ph/0509276] [INSPIRE].

    ADS  Google Scholar 

  13. E. Nakano, M. Nitta and T. Matsuura, Non-Abelian strings in high density QCD: zero modes and interactions, Phys. Rev. D 78 (2008) 045002 [arXiv:0708.4096] [INSPIRE].

    ADS  Google Scholar 

  14. M. Eto and M. Nitta, Color magnetic flux tubes in dense QCD, Phys. Rev. D 80 (2009) 125007 [arXiv:0907.1278] [INSPIRE].

    ADS  Google Scholar 

  15. M. Eto, E. Nakano and M. Nitta, Effective world-sheet theory of color magnetic flux tubes in dense QCD, Phys. Rev. D 80 (2009) 125011 [arXiv:0908.4470] [INSPIRE].

    ADS  Google Scholar 

  16. E. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].

    Google Scholar 

  17. M. Prasad and C.M. Sommerfield, An exact classical solution for thet Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [INSPIRE].

    ADS  Google Scholar 

  21. N. Dorey, T.J. Hollowood and D. Tong, The BPS spectra of gauge theories in two-dimensions and four-dimensions, JHEP 05 (1999) 006 [hep-th/9902134] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Belavin, A.M. Polyakov, A. Schwartz and Y. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052 [hep-th/0611278] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Y. Yoshida, Localization of vortex partition functions in \( \mathcal{N} \) = (2, 2) super Yang-Mills theory, arXiv:1101.0872 [INSPIRE].

  26. G. Bonelli, A. Tanzini and J. Zhao, Vertices, vortices and interacting surface operators, JHEP 06 (2012) 178 [arXiv:1102.0184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Bonelli, A. Tanzini and J. Zhao, The Liouville side of the vortex, JHEP 09 (2011) 096 [arXiv:1107.2787] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Miyake, K. Ohta and N. Sakai, Volume of moduli space of vortex equations and localization, Prog. Theor. Phys. 126 (2011) 637 [arXiv:1105.2087] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. T. Fujimori, T. Kimura, M. Nitta and K. Ohashi, Vortex counting from field theory, JHEP 06 (2012) 028 [arXiv:1204.1968] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  31. T. Inami, S. Minakami and M. Nitta, Non-integrability of self-dual Yang-Mills-Higgs system, Nucl. Phys. B 752 (2006) 391 [hep-th/0605064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Atiyah, N.J. Hitchin, V. Drinfeld and Y. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Manifestly supersymmetric effective Lagrangians on BPS solitons, Phys. Rev. D 73 (2006) 125008 [hep-th/0602289] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. T. Fujimori, G. Marmorini, M. Nitta, K. Ohashi and N. Sakai, The moduli space metric for well-separated non-Abelian vortices, Phys. Rev. D 82 (2010) 065005 [arXiv:1002.4580] [INSPIRE].

    ADS  Google Scholar 

  35. M. Eto, T. Fujimori, M. Nitta, K. Ohashi and N. Sakai, Dynamics of non-Abelian vortices, Phys. Rev. D 84 (2011) 125030 [arXiv:1105.1547] [INSPIRE].

    ADS  Google Scholar 

  36. M. Eto et al., Universal reconnection of non-Abelian cosmic strings, Phys. Rev. Lett. 98 (2007) 091602 [hep-th/0609214] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Eto et al., Non-Abelian duality from vortex moduli: a dual model of color-confinement, Nucl. Phys. B 780 (2007) 161 [hep-th/0611313] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Eto et al., Group theory of non-Abelian vortices, JHEP 11 (2010) 042 [arXiv:1009.4794] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. E. Witten, Some exact multi-instanton solutions of classical Yang-Mills theory, Phys. Rev. Lett. 38 (1977) 121 [INSPIRE].

    Article  ADS  Google Scholar 

  40. I. Strachan, Low velocity scattering of vortices in a modified Abelian Higgs model, J. Math. Phys. 33 (1992) 102 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A.D. Popov, Integrability of vortex equations on Riemann surfaces, Nucl. Phys. B 821 (2009) 452 [arXiv:0712.1756] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A.D. Popov, Non-Abelian vortices on Riemann surfaces: an integrable case, Lett. Math. Phys. 84 (2008) 139 [arXiv:0801.0808] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. S. Krusch and J.M. Speight, Exact moduli space metrics for hyperbolic vortices, J. Math. Phys. 51 (2010) 022304 [arXiv:0906.2007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. N.S. Manton and N.A. Rink, Vortices on hyperbolic surfaces, J. Phys. A 43 (2010) 434024 [arXiv:0912.2058] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. P. Sutcliffe, Hyperbolic vortices with large magnetic flux, Phys. Rev. D 85 (2012) 125015 [arXiv:1204.0400] [INSPIRE].

    ADS  Google Scholar 

  46. N.S. Manton and N. Sakai, Maximally non-Abelian vortices from self-dual Yang-Mills fields, Phys. Lett. B 687 (2010) 395 [arXiv:1001.5236] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. A.D. Popov and R.J. Szabo, Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions, J. Math. Phys. 47 (2006) 012306 [hep-th/0504025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. O. Lechtenfeld, A.D. Popov and R.J. Szabo, Quiver gauge theory and noncommutative vortices, Prog. Theor. Phys. Suppl. 171 (2007) 258 [arXiv:0706.0979] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Eto et al., Constructing non-Abelian vortices with arbitrary gauge groups, Phys. Lett. B 669 (2008) 98 [arXiv:0802.1020] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. M. Eto et al., Non-Abelian vortices in SO(N) and USp(N) gauge theories, JHEP 06 (2009) 004 [arXiv:0903.4471] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Eto, T. Fujimori, S.B. Gudnason, M. Nitta and K. Ohashi, SO and USp Kähler and hyper-Kähler quotients and lumps, Nucl. Phys. B 815 (2009) 495 [arXiv:0809.2014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. M. Eto et al., Vortices and monopoles in mass-deformed SO and USp gauge theories, JHEP 12 (2011) 017 [arXiv:1108.6124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneto Nitta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eto, M., Fujimori, T., Nitta, M. et al. All exact solutions of non-Abelian vortices from Yang-Mills instantons. J. High Energ. Phys. 2013, 34 (2013). https://doi.org/10.1007/JHEP07(2013)034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)034

Keywords

Navigation