Skip to main content
Log in

Boundary state from Ellwood invariants

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Boundary states are given by appropriate linear combinations of Ishibashi states. Starting from any open string field theory solution and assuming Ellwood conjecture we show that every coefficient of such a linear combination is given by an Ellwood invariant, computed in a slightly modified theory where it does not trivially vanish by the on-shell condition. Unlike the previous construction of Kiermaier, Okawa and Zwiebach, ours is linear in the string field, it is manifestly gauge invariant and it is also suitable for solutions known only numerically. The correct boundary state is readily reproduced in the case of known analytic solutions and, as an example, we compute the energy momentum tensor of the rolling tachyon from the generalized invariants of the corresponding solution. We also compute the energy density profile of Siegel-gauge multiple lump solutions and show that, as the level increases, it correctly approaches a sum of delta functions. This provides a gauge invariant way of computing the separations between the lower dimensional D-branes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, hep-th/0311017 [INSPIRE].

  3. E. Fuchs and M. Kroyter, Analytical Solutions of Open String Field Theory, Phys. Rept. 502 (2011) 89 [arXiv:0807.4722] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Sen, Energy momentum tensor and marginal deformations in open string field theory, JHEP 08 (2004) 034 [hep-th/0403200] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I. Ellwood, The Closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].

  7. T. Kawano, I. Kishimoto and T. Takahashi, Gauge Invariant Overlaps for Classical Solutions in Open String Field Theory, Nucl. Phys. B 803 (2008) 135 [arXiv:0804.1541] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Ishibashi, The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Takahashi, The boundary state for a class of analytic solutions in open string field theory, JHEP 11 (2011) 054 [arXiv:1110.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Rajaraman and M. Rozali, D-branes in linear dilaton backgrounds, JHEP 12 (1999) 005 [hep-th/9909017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Gaberdiel, Boundary conformal field theory and D-branes, lectures given at the TMR network school on Nonperturbative methods in low dimensional integrable models?, Budapest, 15-21 July 2003, http://www.phys.ethz.ch/~mrg/lectures2.pdf.

  14. M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: A General framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Bonora, C. Maccaferri and D. Tolla, Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  23. Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. T. Erler, Split String Formalism and the Closed String Vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Schnabl, Algebraic solutions in Open String Field Theory - A Lightning Review, arXiv:1004.4858 [INSPIRE].

  27. I. Kishimoto, Comments on gauge invariant overlaps for marginal solutions in open string field theory, Prog. Theor. Phys. 120 (2008) 875 [arXiv:0808.0355] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Erler and C. Maccaferri, The Phantom Term in Open String Field Theory, JHEP 06 (2012) 084 [arXiv:1201.5122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with Singular Gauge Transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].

    ADS  Google Scholar 

  32. F. Larsen, A. Naqvi and S. Terashima, Rolling tachyons and decaying branes, JHEP 02 (2003) 039 [hep-th/0212248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Hellerman and M. Schnabl, Light-like tachyon condensation in Open String Field Theory, JHEP 04 (2013) 005 [arXiv:0803.1184] [INSPIRE].

    Article  ADS  Google Scholar 

  35. N. Moeller, A. Sen and B. Zwiebach, D-branes as tachyon lumps in string field theory, JHEP 08 (2000) 039 [hep-th/0005036] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. N. Moeller, Codimension two lump solutions in string field theory and tachyonic theories, hep-th/0008101 [INSPIRE].

  37. M. Beccaria, D0-brane tension in string field theory, JHEP 09 (2005) 021 [hep-th/0508090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Kurs, Classical solutions in string field theory, Senior thesis, Princeton University, (2005).

  39. M. Kudrna and M. Schnabl, to appear.

  40. M. Kudrna, T. Masuda, Y. Okawa, M. Schnabl and K. Yoshida, Gauge-invariant observables and marginal deformations in open string field theory, JHEP 01 (2013) 103 [arXiv:1207.3335] [INSPIRE].

    Article  ADS  Google Scholar 

  41. T. Erler, Exotic Universal Solutions in Cubic Superstring Field Theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Sen and B. Zwiebach, Large marginal deformations in string field theory, JHEP 10 (2000) 009 [hep-th/0007153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. J.L. Karczmarek and M. Longton, SFT on separated D-branes and D-brane translation, JHEP 08 (2012) 057 [arXiv:1203.3805] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. H.G. Kausch, Curiosities at c = -2, hep-th/9510149 [INSPIRE].

  45. D. Gaiotto and L. Rastelli, A Paradigm of open/closed duality: Liouville D-branes and the Kontsevich model, JHEP 07 (2005) 053 [hep-th/0312196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. LeClair, M.E. Peskin and C. Preitschopf, String Field Theory on the Conformal Plane. 1. Kinematical Principles, Nucl. Phys. B 317 (1989) 411 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. J. Polchinski, String theory. Vol. 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998), pg. 402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Maccaferri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudrna, M., Maccaferri, C. & Schnabl, M. Boundary state from Ellwood invariants. J. High Energ. Phys. 2013, 33 (2013). https://doi.org/10.1007/JHEP07(2013)033

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)033

Keywords

Navigation