Skip to main content
Log in

New solution for neutrino masses and leptogenesis in adjoint SU(5)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate baryogenesis via leptogenesis and generation of neutrino masses and mixings through the Type I plus Type III seesaw plus an one-loop mechanism in the context of Renormalizable Adjoint SU(5) theory. One light neutrino remains massless, because the contributions from three heavy Majorana fermions ρ 0, ρ 3 and ρ 8 to the neutrino mass matrix are not linearly independent. However none of these heavy fermions is decoupled from the generation of neutrino masses. This opens a new range in parameter space for successful leptogenesis, in particular, allows for inverted hierarchy of the neutrino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  2. H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [SPIRES].

    Article  ADS  Google Scholar 

  3. B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].

    Article  ADS  Google Scholar 

  4. P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/ 0702287] [SPIRES].

    ADS  Google Scholar 

  5. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  6. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., Tsukuba Japan (1979), pg. 95 [SPIRES].

  7. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories in Supergravity, D.Z. Freedman and P. van Nieuwenhuizen eds., North Holland, Amsterdam The Netherlands (1979), pg. 315 [SPIRES].

    Google Scholar 

  8. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  9. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  10. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/ 9805219] [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Blanchet and P. Fileviez Perez, Baryogenesis via leptogenesis in adjoint SU(5), JCAP 08 (2008) 037 [arXiv:0807.3740] [SPIRES].

    ADS  Google Scholar 

  12. S. Blanchet and P. Fileviez Perez, On the role of low-energy CP-violation in leptogenesis, Mod. Phys. Lett. A 24 (2009) 1399 [arXiv:0810.1301] [SPIRES].

    ADS  Google Scholar 

  13. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [SPIRES].

    ADS  Google Scholar 

  14. A.D. Sakharov, Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Theor. Phys. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [SPIRES].

    Google Scholar 

  15. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  16. P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton stability, Dark Matter and light color octet scalars in adjoint SU(5) unification, Phys. Rev. D 78 (2008) 015013 [arXiv:0803.4156] [SPIRES].

    ADS  Google Scholar 

  17. I. Doršner et al., Light colored scalar as messenger of up-quark flavor dynamics in grand unified theories, Phys. Rev. D 82 (2010) 094015 [arXiv:1007.2604] [SPIRES].

    ADS  Google Scholar 

  18. P. Fileviez Perez, R. Gavin, T. McElmurry and F. Petriello, Grand unification and light color-octet scalars at the LHC, Phys. Rev. D 78 (2008) 115017 [arXiv: 0809.2106] [SPIRES].

    ADS  Google Scholar 

  19. I. Doršner et al., Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].

    ADS  Google Scholar 

  20. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].

    ADS  Google Scholar 

  21. P. Fileviez Perez and M.B. Wise, On the origin of neutrino masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [SPIRES].

    ADS  Google Scholar 

  22. P. Fileviez Perez, The origin of neutrino masses and physics beyond the Standard Model, AIP Conf. Proc. 1222 (2010) 3 [arXiv:0909.2698] [SPIRES].

    Article  ADS  Google Scholar 

  23. P. Fileviez Perez, T. Han, S. Spinner and M.K. Trenkel, Lepton number violation from colored states at the LHC, JHEP 01 (2011) 046 [arXiv:1010.5802] [SPIRES].

    Article  ADS  Google Scholar 

  24. Y. Liao and J.-Y. Liu, Radiative and flavor-violating transitions of leptons from interactions with color-octet particles, Phys. Rev. D 81 (2010) 013004 [arXiv:0911.3711] [SPIRES].

    ADS  Google Scholar 

  25. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and Dark Matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].

    ADS  Google Scholar 

  26. P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [SPIRES].

    ADS  Google Scholar 

  27. M. Raidal and A. Strumia, Predictions of the most minimal see-saw model, Phys. Lett. B 553 (2003) 72 [hep-ph/0210021] [SPIRES].

    ADS  Google Scholar 

  28. A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [SPIRES].

    ADS  Google Scholar 

  29. D.V. Zhuridov, New ways for leptogenesis versus neutrino masses, arXiv:1107.1087 [SPIRES].

  30. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].

    Article  ADS  Google Scholar 

  31. M.A. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [SPIRES].

    ADS  Google Scholar 

  32. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].

    ADS  Google Scholar 

  33. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].

    Article  ADS  Google Scholar 

  34. T. Hambye, Y. Lin, A. Notari, M. Papucci and A. Strumia, Constraints on neutrino masses from leptogenesis models, Nucl. Phys. B 695 (2004) 169 [hep-ph/0312203] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Strumia, Sommerfeld corrections to type-II and III leptogenesis, Nucl. Phys. B 809 (2009) 308 [arXiv:0806.1630] [SPIRES].

    Article  ADS  Google Scholar 

  36. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  37. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [SPIRES].

    ADS  Google Scholar 

  38. P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. P. Kalyniak and J.N. Ng, Symmetry breaking patterns in SU(5) with nonminimal Higgs fields, Phys. Rev. D 26 (1982) 890 [SPIRES].

    ADS  Google Scholar 

  40. P. Eckert, J.M. Gerard, H. Ruegg and T. Schucker, Minimization of the SU(5) invariant scalar potential for the fortyfive-dimensional representation, Phys. Lett. B 125 (1983) 385 [SPIRES].

    ADS  Google Scholar 

  41. H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Zhuridov.

Additional information

ArXiv ePrint: 1105.4546

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannike, K., Zhuridov, D.V. New solution for neutrino masses and leptogenesis in adjoint SU(5). J. High Energ. Phys. 2011, 102 (2011). https://doi.org/10.1007/JHEP07(2011)102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)102

Keywords

Navigation