Skip to main content
Log in

An R-parity conserving radiative neutrino mass model without right-handed neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The model proposed by A. Zee (1986) and K. S. Babu (1988) is a simple radiative seesaw model, in which tiny neutrino masses are generated at the two-loop level. We investigate a supersymmetric extension of the Zee-Babu model under R-parity conservation. The lightest superpartner particle can then be a dark matter candidate. We find that the neutrino data can be reproduced with satisfying current data from lepton flavour violation even in the scenario where not all the superpartner particles are heavy. Phenomenology at the Large Hadron Collider is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors And Unified Theories, in Supergravity, F. Nieuwenhuizen and D. Friedman eds., North Holland, Amsterdam The Netherlands (1979).

    Google Scholar 

  3. T. Yanagida, Horizontal Gauge Symmetry and Masses of Neutrinos, in Proceefing of the Workshop on Unified Theories and the Baryon Number of the Universe, O. Sawada and A. Sugamoto eds, KEK, Japan (1979).

    Google Scholar 

  4. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [SPIRES].

    Article  ADS  Google Scholar 

  5. S. L. Glashow, The future of elementary particle physics, in Proceedings of the Cargése Summer Institute on Quarks and Leptons, Cargése, July 9–29 1979, M. Lévy et al. eds., Plenum, New York (1980), pg. 707.

    Google Scholar 

  6. R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  7. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  8. T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].

    ADS  Google Scholar 

  9. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].

    ADS  Google Scholar 

  10. C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B 187 (1981) 343 [SPIRES].

    Article  ADS  Google Scholar 

  11. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  12. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  13. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  14. E. Ma, Pathways to Naturally Small Neutrino Masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].

    ADS  Google Scholar 

  16. A. Zee, Charged Scalar Field and Quantum Number Violations, Phys. Lett. B 161 (1985) 141 [SPIRES].

    ADS  Google Scholar 

  17. A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. K.S. Babu, Model of ‘Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [SPIRES].

    ADS  Google Scholar 

  19. L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [SPIRES].

    ADS  Google Scholar 

  20. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].

    ADS  Google Scholar 

  21. M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV -Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [SPIRES].

    Article  ADS  Google Scholar 

  22. S.T. Petcov, Remarks on the Zee Model of Neutrino Mixing (μeγ, Heavy NeutrinoLight Neutrino γ, etc.), Phys. Lett. B 115 (1982) 401 [SPIRES].

    ADS  Google Scholar 

  23. S. Kanemura et al., Phenomenology of Higgs bosons in the Zee-model, Phys. Rev. D 64 (2001) 053007 [hep-ph/0011357] [SPIRES].

    ADS  Google Scholar 

  24. C. Jarlskog, M. Matsuda, S. Skadhauge and M. Tanimoto, Zee mass matrix and bi-maximal neutrino mixing, Phys. Lett. B 449 (1999) 240 [hep-ph/9812282] [SPIRES].

    ADS  Google Scholar 

  25. P.H. Frampton and S.L. Glashow, Can the Zee ansatz for neutrino masses be correct?, Phys. Lett. B 461 (1999) 95 [hep-ph/9906375] [SPIRES].

    ADS  Google Scholar 

  26. Y. Koide, Can the Zee model explain the observed neutrino data?, Phys. Rev. D 64 (2001) 077301 [hep-ph/0104226] [SPIRES].

    ADS  Google Scholar 

  27. N. Haba, K. Hamaguchi and T. Suzuki, Cosmological constraint on the Zee model, Phys. Lett. B 519 (2001) 243 [hep-ph/0108013] [SPIRES].

    ADS  Google Scholar 

  28. X.-G. He, Is the Zee model neutrino mass matrix ruled out?, Eur. Phys. J. C 34 (2004) 371 [hep-ph/0307172] [SPIRES].

    ADS  Google Scholar 

  29. P.H. Frampton, M.C. Oh and T. Yoshikawa, Zee model confronts SNO data, Phys. Rev. D 65 (2002) 073014 [hep-ph/0110300] [SPIRES].

    ADS  Google Scholar 

  30. K. Hasegawa, C.S. Lim and K. Ogure, Escape from washing out of baryon number in a two-zero-texture general Zee model comPatible with the LMA-MSW solution, Phys. Rev. D 68 (2003) 053006 [hep-ph/0303252] [SPIRES].

    ADS  Google Scholar 

  31. K.S. Babu and C. Macesanu, Two-loop neutrino mass generation and its experimental consequences, Phys. Rev. D 67 (2003) 073010 [hep-ph/0212058] [SPIRES].

    ADS  Google Scholar 

  32. D. Aristizabal Sierra and M. Hirsch, Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses, JHEP 12 (2006) 052 [hep-ph/0609307] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu Model at the LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013 [arXiv:0711.0483] [SPIRES].

    ADS  Google Scholar 

  34. T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269 [arXiv:0909.0455] [SPIRES].

    ADS  Google Scholar 

  35. M. Aoki and S. Kanemura, Probing the Majorana nature of TeV-scale radiative seesaw models at collider experiments, Phys. Lett. B 689 (2010) 28 [arXiv:1001.0092] [SPIRES].

    ADS  Google Scholar 

  36. K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter model, Phys. Rev. D 69 (2004) 113009 [hep-ph/0403003] [SPIRES].

    ADS  Google Scholar 

  37. K. Cheung, P.-Y. Tseng and T.-C. Yuan, Double-action dark matter, PAMELA and ATIC, Phys. Lett. B 678 (2009) 293 [arXiv:0902.4035] [SPIRES].

    ADS  Google Scholar 

  38. J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μeγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [SPIRES].

    ADS  Google Scholar 

  39. T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of Dark Matter: Muon Anomalous Magnetic Moment, Radiative Neutrino Mass and Novel Leptogenesis at the TeV Scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [SPIRES].

    ADS  Google Scholar 

  40. D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: Warm dark matter, collider and lepton flavour violating signals, Phys. Rev. D 79 (2009) 013011 [arXiv:0808.3340] [SPIRES].

    ADS  Google Scholar 

  41. D. Suematsu, T. Toma and T. Yoshida, Reconciliation of CDM abundance and μeγ in a radiative seesaw model, Phys. Rev. D 79 (2009) 093004 [arXiv:0903.0287] [SPIRES].

    ADS  Google Scholar 

  42. M. Aoki, S. Kanemura and O. Seto, A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and its Phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [SPIRES].

    ADS  Google Scholar 

  43. M. Aoki, S. Kanemura and O. Seto, Multi-Higgs portal dark matter under the CDMS II results, Phys. Lett. B 685 (2010) 313 [arXiv:0912.5536] [SPIRES].

    ADS  Google Scholar 

  44. J. van der Bij and M.J.G. Veltman, Two Loop Large Higgs Mass Correction to the rho Parameter, Nucl. Phys. B 231 (1984) 205 [SPIRES].

    ADS  Google Scholar 

  45. K.L. McDonald and B.H.J. McKellar, Evaluating the two loop diagram responsible for neutrino mass in Babu’s model, hep-ph/0309270 [SPIRES].

  46. L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [SPIRES].

    Article  ADS  Google Scholar 

  47. I. Jack, D.R.T. Jones and A.F. Kord, R-parity violation and general soft supersymmetry breaking, Phys. Lett. B 588 (2004) 127 [hep-ph/0402045] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY -breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [SPIRES].

    Article  ADS  Google Scholar 

  49. M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, in preparation.

  50. T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K_L} \to \mu \bar{\mu } \) , K +π + Neutrino anti-neutrino and \( {K^0} \leftrightarrow {\bar{K}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [SPIRES].

    Article  ADS  Google Scholar 

  51. SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES].

    Article  ADS  Google Scholar 

  52. T. Aushev et al., Physics at Super B Factory, arXiv:1002.5012 [SPIRES].

  53. M. Bona et al., SuperB: A High-Luminosity Asymmetric e + e Super Flavor Factory. Conceptual Design Report, arXiv:0709.0451 [SPIRES].

  54. MEGA collaboration, M.L. Brooks et al., New Limit for the Family-Number Non-conserving Decay μ +e γ +, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].

    Article  ADS  Google Scholar 

  55. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  56. T. Mori et al., Search for μ +e + γ Down to 10−14 Branching Ratio, Research Proposal to Paul Scherrer Institut (1999).

  57. http://meg.web.psi.ch/.

  58. D0 collaboration, V.M. Abazov et al., Search for pair production of doubly-charged Higgs bosons in the H ++ H −−μ + μ + μ μ final state at D0, Phys. Rev. Lett. 101 (2008) 071803 [arXiv:0803.1534] [SPIRES].

    Article  ADS  Google Scholar 

  59. The CDF collaboration, T. Aaltonen et al., Search for Doubly Charged Higgs Bosons with Lepton-Flavor-Violating Decays involving τ Leptons, Phys. Rev. Lett. 101 (2008) 121801 [arXiv:0808.2161] [SPIRES].

    Article  ADS  Google Scholar 

  60. B. Dutta, R.N. Mohapatra and D.J. Muller, The Signature at the Tevatron for the light doubly charged Higgsino of the supersymmetric left-right model, Phys. Rev. D 60 (1999) 095005 [hep-ph/9810443] [SPIRES].

    ADS  Google Scholar 

  61. M. Frank, K. Huitu and S.K. Rai, Single Production of Doubly Charged Higgsinos at linear e e colliders, Phys. Rev. D 77 (2008) 015006 [arXiv:0710.2415] [SPIRES].

    ADS  Google Scholar 

  62. D.A. Demir et al., Doubly Charged Higgsinos at Tevatron, Phys. Rev. D 79 (2009) 095006 [arXiv:0903.3955] [SPIRES].

    ADS  Google Scholar 

  63. A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].

  64. A. Pukhov, Calchep 2.3: MSSM, structure functions, event generation, and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  65. E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [SPIRES].

    ADS  Google Scholar 

  66. M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [SPIRES].

    ADS  Google Scholar 

  67. A.G. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [SPIRES].

    ADS  Google Scholar 

  68. J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [SPIRES].

    Article  ADS  Google Scholar 

  69. A.G. Akeroyd, M. Aoki and H. Sugiyama, Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC, Phys. Rev. D 77 (2008) 075010 [arXiv:0712.4019] [SPIRES].

    ADS  Google Scholar 

  70. M. Kadastik, M. Raidal and L. Rebane, Direct determination of neutrino mass parameters at future colliders, Phys. Rev. D 77 (2008) 115023 [arXiv:0712.3912] [SPIRES].

    ADS  Google Scholar 

  71. P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino Masses and the LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [SPIRES].

    ADS  Google Scholar 

  72. E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, arXiv:1001.4538 [SPIRES].

  73. I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [SPIRES].

    Article  ADS  Google Scholar 

  75. K. Funakubo and E. Senaha, Electroweak phase transition, critical bubbles and sphaleron decoupling condition in the MSSM, Phys. Rev. D 79 (2009) 115024 [arXiv:0905.2022] [SPIRES].

    ADS  Google Scholar 

  76. S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Shindou.

Additional information

ArXiv ePrint: 1005.5159

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, M., Kanemura, S., Shindou, T. et al. An R-parity conserving radiative neutrino mass model without right-handed neutrinos. J. High Energ. Phys. 2010, 84 (2010). https://doi.org/10.1007/JHEP07(2010)084

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)084

Keywords

Navigation