Skip to main content
Log in

Flavoured soft leptogenesis and natural values of the B term

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We revisit flavour effects in soft leptogenesis relaxing the assumption of universality for the soft supersymmetry breaking terms. We find that with respect to the case in which the heavy sneutrinos decay with equal rates and equal CP asymmetries for all lepton flavours, hierarchical flavour configurations can enhance the efficiency by more than two orders of magnitude. This translates in more than three orders of magnitude with respect to the one-flavour approximation. We verify that lepton flavour equilibration effects related to off-diagonal soft slepton masses are ineffective for damping these large enhancements. We show that soft leptogenesis can be successful for unusual values of the relevant parameters, allowing for \( B \sim \mathcal{O}\left( {\text{TeV}} \right) \) and for values of the washout parameter up to m eff/m * ∼ 5 × 103.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  2. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [SPIRES].

    Article  ADS  Google Scholar 

  3. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  4. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in the proceedings of the Supergravity Stony Brook workshop, P. Van Nieuwenhuizen and D. Freedman eds., North-Holland, Amsterdam The Netherlands (1979).

    Google Scholar 

  5. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theories and baryon number in the Universe, Tsukuba, Japan (1979), A. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).

    Google Scholar 

  6. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [SPIRES].

    ADS  Google Scholar 

  8. W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [hep-ph/0205349] [SPIRES].

    Article  ADS  Google Scholar 

  9. J.R. Ellis and M. Raidal, Leptogenesis and the violation of lepton number and CP at low energies, Nucl. Phys. B 643 (2002) 229 [hep-ph/0206174] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [SPIRES].

    Article  ADS  Google Scholar 

  11. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [SPIRES].

    ADS  Google Scholar 

  12. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].

    Article  ADS  Google Scholar 

  13. S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [SPIRES].

    ADS  Google Scholar 

  14. O. Vives, Flavoured leptogenesis: a successful thermal leptogenesis with N(1) mass below 108 GeV, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [SPIRES].

    ADS  Google Scholar 

  15. E. Ma, N. Sahu and U. Sarkar, Leptogenesis below the Davidson-Ibarra bound, J. Phys. G 32 (2006) L65 [hep-ph/0603043] [SPIRES].

    Google Scholar 

  16. P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [SPIRES].

    ADS  Google Scholar 

  17. M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [SPIRES].

    ADS  Google Scholar 

  18. J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological gravitino regeneration and decay, Phys. Lett. B 145 (1984) 181 [SPIRES].

    ADS  Google Scholar 

  19. J.R. Ellis, D.V. Nanopoulos and S. Sarkar, The cosmology of decaying gravitinos, Nucl. Phys. B 259 (1985) 175 [SPIRES].

    Article  ADS  Google Scholar 

  20. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [SPIRES].

    ADS  Google Scholar 

  21. M. Kawasaki, K. Kohri and T. Moroi, Hadronic decay of late-decaying particles and Big-Bang nucleosynthesis, Phys. Lett. B 625 (2005) 7 [astro-ph/0402490] [SPIRES].

    ADS  Google Scholar 

  22. K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis with unstable gravitino and upper bound on the reheating temperature, Phys. Rev. D 73 (2006) 123511 [hep-ph/0507245] [SPIRES].

    ADS  Google Scholar 

  23. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].

    ADS  Google Scholar 

  25. A. Pilaftsis, Resonant tau leptogenesis with observable lepton number violation, Phys. Rev. Lett. 95 (2005) 081602 [hep-ph/0408103] [SPIRES].

    Article  ADS  Google Scholar 

  26. Y. Grossman, T. Kashti, Y. Nir and E. Roulet, Leptogenesis from supersymmetry breaking, Phys. Rev. Lett. 91 (2003) 251801 [hep-ph/0307081] [SPIRES].

    Article  ADS  Google Scholar 

  27. G. D’Ambrosio, G.F. Giudice and M. Raidal, Soft leptogenesis, Phys. Lett. B 575 (2003) 75 [hep-ph/0308031] [SPIRES].

    ADS  Google Scholar 

  28. C.S. Fong and M.C. Gonzalez-Garcia, Flavoured soft leptogenesis, JHEP 06 (2008) 076 [arXiv:0804.4471] [SPIRES].

    Article  ADS  Google Scholar 

  29. C.S. Fong and M.C. Gonzalez-Garcia, On quantum effects in soft leptogenesis, JCAP 08 (2008) 008 [arXiv:0806.3077] [SPIRES].

    ADS  Google Scholar 

  30. C.S. Fong and M.C. Gonzalez-Garcia, On gaugino contributions to soft leptogenesis, JHEP 03 (2009) 073 [arXiv:0901.0008] [SPIRES].

    Article  ADS  Google Scholar 

  31. J. Garayoa, M.C. Gonzalez-Garcia and N. Rius, Soft leptogenesis in the inverse seesaw model, JHEP 02 (2007) 021 [hep-ph/0611311] [SPIRES].

    Article  ADS  Google Scholar 

  32. G. D’Ambrosio, T. Hambye, A. Hektor, M. Raidal and A. Rossi, Leptogenesis in the minimal supersymmetric triplet seesaw model, Phys. Lett. B 604 (2004) 199 [hep-ph/0407312] [SPIRES].

    ADS  Google Scholar 

  33. M.-C. Chen and K.T. Mahanthappa, Lepton flavor violating decays, soft leptogenesis and SUSY SO(10), Phys. Rev. D 70 (2004) 113013 [hep-ph/0409096] [SPIRES].

    ADS  Google Scholar 

  34. Y. Grossman, R. Kitano and H. Murayama, Natural soft leptogenesis, JHEP 06 (2005) 058 [hep-ph/0504160] [SPIRES].

    Article  ADS  Google Scholar 

  35. E.J. Chun and S. Scopel, Soft leptogenesis in Higgs triplet model, Phys. Lett. B 636 (2006) 278 [hep-ph/0510170] [SPIRES].

    ADS  Google Scholar 

  36. A.D. Medina and C.E.M. Wagner, Soft leptogenesis in warped extra dimensions, JHEP 12 (2006) 037 [hep-ph/0609052] [SPIRES].

    Article  ADS  Google Scholar 

  37. E.J. Chun and L. Velasco-Sevilla, SO(10) unified models and soft leptogenesis, JHEP 08 (2007) 075 [hep-ph/0702039] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. Y. Grossman, T. Kashti, Y. Nir and E. Roulet, New ways to soft leptogenesis, JHEP 11 (2004) 080 [hep-ph/0407063] [SPIRES].

    Article  ADS  Google Scholar 

  39. D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [SPIRES].

    Article  ADS  Google Scholar 

  40. V. Cirigliano, A. De Simone, G. Isidori, I. Masina and A. Riotto, Quantum resonant leptogenesis and minimal lepton flavour violation, JCAP 01 (2008) 004 [arXiv:0711.0778] [SPIRES].

    ADS  Google Scholar 

  41. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [SPIRES].

    Article  ADS  Google Scholar 

  42. A. De Simone and A. Riotto, On the impact of flavour oscillations in leptogenesis, JCAP 02 (2007) 005 [hep-ph/0611357] [SPIRES].

    Google Scholar 

  43. S. Blanchet, P. Di Bari and G.G. Raffelt, Quantum Zeno effect and the impact of flavor in leptogenesis, JCAP 03 (2007) 012 [hep-ph/0611337] [SPIRES].

    ADS  Google Scholar 

  44. T. Endoh, T. Morozumi and Z.-h. Xiong, Primordial lepton family asymmetries in seesaw model, Prog. Theor. Phys. 111 (2004) 123 [hep-ph/0308276] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  45. T. Fujihara et al., Cosmological family asymmetry and CP-violation, Phys. Rev. D 72 (2005) 016006 [hep-ph/0505076] [SPIRES].

    ADS  Google Scholar 

  46. S. Pascoli, S.T. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [SPIRES].

    ADS  Google Scholar 

  47. G.C. Branco, R. Gonzalez Felipe and F.R. Joaquim, A new bridge between leptonic CP-violation and leptogenesis, Phys. Lett. B 645 (2007) 432 [hep-ph/0609297] [SPIRES].

    ADS  Google Scholar 

  48. S. Antusch and A.M. Teixeira, Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, JCAP 02 (2007) 024 [hep-ph/0611232] [SPIRES].

    ADS  Google Scholar 

  49. S. Pascoli, S.T. Petcov and A. Riotto, Leptogenesis and low energy CP-violation in neutrino physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Blanchet, P. Di Bari and G.G. Raffelt, Quantum Zeno effect and the impact of flavor in leptogenesis, JCAP 03 (2007) 012 [hep-ph/0611337] [SPIRES].

    ADS  Google Scholar 

  51. W. Buchmüller and M. Plümacher, Spectator processes and baryogenesis, Phys. Lett. B 511 (2001) 74 [hep-ph/0104189] [SPIRES].

    ADS  Google Scholar 

  52. E. Nardi, Y. Nir, J. Racker and E. Roulet, On Higgs and sphaleron effects during the leptogenesis era, JHEP 01 (2006) 068 [hep-ph/0512052] [SPIRES].

    Article  ADS  Google Scholar 

  53. D. Aristizabal Sierra, M. Losada and E. Nardi, Lepton flavor equilibration and leptogenesis, JCAP 12 (2009) 015 [arXiv:0905.0662] [SPIRES].

    ADS  Google Scholar 

  54. G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [SPIRES].

    Article  ADS  Google Scholar 

  55. C.S. Fong and J. Racker, On fast CP-violating interactions in leptogenesis, arXiv:1004.2546 [SPIRES].

  56. T. Inui, T. Ichihara, Y. Mimura and N. Sakai, Cosmological baryon asymmetry in supersymmetric Standard Models and heavy particle effects, Phys. Lett. B 325 (1994) 392 [hep-ph/9310268] [SPIRES].

    ADS  Google Scholar 

  57. S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [SPIRES].

    ADS  Google Scholar 

  58. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  59. S. Davidson, J. Garayoa, F. Palorini and N. Rius, CP violation in the SUSY seesaw: leptogenesis and low energy, JHEP 09 (2008) 053 [arXiv:0806.2832] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Sheng Fong.

Additional information

ArXiv ePrint: hep-ph/1004.5125

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, C.S., Gonzalez-Garcia, M.C., Nardi, E. et al. Flavoured soft leptogenesis and natural values of the B term. J. High Energ. Phys. 2010, 1 (2010). https://doi.org/10.1007/JHEP07(2010)001

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)001

Keywords

Navigation