Skip to main content
Log in

Rotating black hole hair

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that such a system displays much richer phenomenology than its static Schwarzschild or Reissner-Nordstrom cousins, for example, the rotation generates a near horizon ‘electric’ field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is conical with respect to a local co-rotating frame, not with respect to the static frame at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Chrusciel, ‘No hairtheorems: folklore, conjectures, results, Contemp. Math. 170 (1994) 23 [gr-qc/9402032] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  2. J.D. Bekenstein, Black hole hair: 25 years after, in 2nd international A.D. Sakharov conference on physics, Moscow Russia (1996), pg. 216 [gr-qc/9605059] [INSPIRE].

  3. A. Achucarro, R. Gregory and K. Kuijken, Abelian Higgs hair for black holes, Phys. Rev. D 52 (1995) 5729 [gr-qc/9505039] [INSPIRE].

    ADS  Google Scholar 

  4. R. Emparan, R. Gregory and C. Santos, Black holes on thick branes, Phys. Rev. D 63 (2001) 104022 [hep-th/0012100] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994).

    MATH  Google Scholar 

  6. H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

    ADS  Google Scholar 

  8. D. Garfinkle, General relativistic strings, Phys. Rev. D 32 (1985) 1323 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M. Aryal, L. Ford and A. Vilenkin, Cosmic strings and black holes, Phys. Rev. D 34 (1986) 2263 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. R. Gregory, Gravitational stability of local strings, Phys. Rev. Lett. 59 (1987) 740 [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Ipser and P. Sikivie, The gravitationally repulsive domain wall, Phys. Rev. D 30 (1984) 712 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. G. Gibbons, Global structure of supergravity domain wall space-times, Nucl. Phys. B 394 (1993) 3 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Gregory and M. Hindmarsh, Smooth metrics for snapping strings, Phys. Rev. D 52 (1995) 5598 [gr-qc/9506054] [INSPIRE].

    ADS  Google Scholar 

  14. D.M. Eardley, G.T. Horowitz, D.A. Kastor and J.H. Traschen, Breaking cosmic strings without monopoles, Phys. Rev. Lett. 75 (1995) 3390 [gr-qc/9506041] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Hawking and S.F. Ross, Pair production of black holes on cosmic strings, Phys. Rev. Lett. 75 (1995) 3382 [gr-qc/9506020] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R. Emparan, Pair creation of black holes joined by cosmic strings, Phys. Rev. Lett. 75 (1995) 3386 [gr-qc/9506025] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Achucarro and R. Gregory, Selection rules for splitting strings, Phys. Rev. Lett. 79 (1997) 1972 [hep-th/9705001] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Dehghani, A. Ghezelbash and R.B. Mann, Abelian Higgs hair for AdS-Schwarzschild black hole, Phys. Rev. D 65 (2002) 044010 [hep-th/0107224] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. A. Ghezelbash and R.B. Mann, Vortices in de Sitter space-times, Phys. Lett. B 537 (2002) 329 [hep-th/0203003] [INSPIRE].

    ADS  Google Scholar 

  20. A. Chamblin, J. Ashbourn-Chamblin, R. Emparan and A. Sornborger, Can extreme black holes have (long) Abelian Higgs hair?, Phys. Rev. D 58 (1998) 124014 [gr-qc/9706004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. A. Chamblin, J. Ashbourn-Chamblin, R. Emparan and A. Sornborger, Abelian Higgs hair for extreme black holes and selection rules for snapping strings, Phys. Rev. Lett. 80 (1998) 4378 [gr-qc/9706032] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F. Bonjour and R. Gregory, Comment onAbelian Higgs hair for extremal black holes and selection rules for snapping strings’, Phys. Rev. Lett. 81 (1998) 5034 [hep-th/9809029] [INSPIRE].

    Article  ADS  Google Scholar 

  23. F. Bonjour, R. Emparan and R. Gregory, Vortices and extreme black holes: the question of flux expulsion, Phys. Rev. D 59 (1999) 084022 [gr-qc/9810061] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. A. Ghezelbash and R.B. Mann, Abelian Higgs hair for rotating and charged black holes, Phys. Rev. D 65 (2002) 124022 [hep-th/0110001] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. A. Aliev and D. Galtsov, Gravitational effects in the field of a central body threaded by a cosmic string, Sov. Astron. Lett. 14 (1988) 48 [INSPIRE].

    ADS  Google Scholar 

  26. V. Cardoso, O.J. Dias, J.P. Lemos and S. Yoshida, The black hole bomb and superradiant instabilities, Phys. Rev. D 70 (2004) 044039 [Erratum ibid. D 70 (2004) 049903] [hep-th/0404096] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. V. Cardoso and O.J. Dias, Small Kerr-anti-de Sitter black holes are unstable, Phys. Rev. D 70 (2004) 084011 [hep-th/0405006] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. A. Vilenkin, Cosmic strings and domain walls, Phys. Rept. 121 (1985) 263 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].

    Google Scholar 

  30. J. Bicak and L. Dvorak, Stationary electromagnetic fields around black holes. 3. General solutions and the fields of current loops near the Reissner-Nordstrom black hole, Phys. Rev. D 22 (1980) 2933 [INSPIRE].

    ADS  Google Scholar 

  31. R.M. Wald, Black hole in a uniform magnetic field, Phys. Rev. D 10 (1974) 1680 [INSPIRE].

    ADS  Google Scholar 

  32. D. Galtsov and E. Masar, Geodesics in space-times containing cosmic strings, Class. Quant. Grav. 6 (1989) 1313 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Charmousis, D. Langlois, D.A. Steer and R. Zegers, Rotating spacetimes with a cosmological constant, JHEP 02 (2007) 064 [gr-qc/0610091] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Gibbons, A. Mujtaba and C. Pope, Ergoregions in magnetised black hole spacetimes, arXiv:1301.3927 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Gregory.

Additional information

ArXiv ePrint: 1303.0519

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, R., Kubizňák, D. & Wills, D. Rotating black hole hair. J. High Energ. Phys. 2013, 23 (2013). https://doi.org/10.1007/JHEP06(2013)023

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)023

Keywords

Navigation