Skip to main content
Log in

Dirichlet boundary conditions in type IIB superstring theory and fermionic T-duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this article we investigate the relation between consequences of Dirichlet boundary conditions (momenta noncommutativity and parameters of the effective theory) and background fields of fermionic T-dual theory. We impose Dirichlet boundary conditions on the endpoints of the open string propagating in background of type IIB superstring theory with constant background fields. We showed that on the solution of the boundary conditions the momenta become noncommutative, while the coordinates commute. Fermionic T-duality is also introduced and its relation to noncommutativity is considered. We use compact notation so that type IIB superstring formally gets the form of the bosonic one with Grassman variables. Then momenta noncommutativity parameters are fermionic T-dual fields. The effective theory, the initial theory on the solution of boundary conditions, is bilinear in the effective coordinates, odd under world-sheet parity transformation. The effective metric is equal to the initial one and terms with the effective Kalb-Ramond field vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, An introduction to T-duality in string theory, Nucl. Phys. Proc. Suppl. 41 (1995) 1 [hep-th/9410237] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. I.A. Bandos and B. Julia, Superfield T-duality rules, JHEP 08 (2003) 032 [hep-th/0303075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

    Article  Google Scholar 

  5. T. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Bakhmatov and D.S. Berman, Exploring fermionic T-duality, Nucl. Phys. B 832 (2010) 89 [arXiv:0912.3657] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Sfetsos, K. Siampos and D.C. Thompson, Canonical pure spinor (fermionic) T-duality, QMUL-PH-10-08 [Class. Quant. Grav. 28 (2011) 055010] [arXiv:1007.5142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. C.-G. Hao, B. Chen and X.-C. Song, On fermionic T-duality of sigma modes on AdS backgrounds, JHEP 12 (2009) 051 [arXiv:0909.5485] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and integrability for strings on AdS backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Dirac quantization of open strings and noncommutativity in branes, Nucl. Phys. B 576 (2000) 578 [hep-th/9906161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C.-S. Chu and P.-M. Ho, Constrained quantization of open string in background B field and noncommutative D-brane, Nucl. Phys. B 568 (2000) 447 [hep-th/9906192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Lee, Canonical quantization of open string and noncommutative geometry, Phys. Rev. D 62 (2000) 024022 [hep-th/9911140] [INSPIRE].

    ADS  Google Scholar 

  16. B. Sazdović, Dilaton field induces commutative Dp-brane coordinate, Eur. Phys. J. C 44 (2005) 599 [hep-th/0408131] [INSPIRE].

    Article  ADS  Google Scholar 

  17. B. Nikolić and B. Sazdović, Gauge symmetries change the number of Dp-brane dimensions, Phys. Rev. D 74 (2006) 045024 [hep-th/0604129] [INSPIRE].

    ADS  Google Scholar 

  18. B. Nikolić and B. Sazdović, Gauge symmetries decrease the number of Dp-brane dimensions, II (inclusion of the Liouville term), Phys. Rev. D 75 (2007) 085011 [hep-th/0611191] [INSPIRE].

    ADS  Google Scholar 

  19. B. Nikolić and B. Sazdović, Noncommutativity in space-time extended by Liouville field, Adv. Theor. Math. Phys. 14 (2010) 1 [arXiv:0711.4463] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Nikolić and B. Sazdović, Noncommutativity relations in type IIB theory and their supersymmetry, JHEP 08 (2010) 037 [arXiv:1005.1181] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B. Nikolić and B. Sazdović, D5-brane type-I superstring background fields in terms of type IIB ones by canonical method and T-duality approach, Nucl. Phys. B 836 (2010) 100 [arXiv:1004.1962] [INSPIRE].

    Article  ADS  Google Scholar 

  22. B. Nikolić and B. Sazdović, Fermionic T-duality and momenta noncommutativity, Phys. Rev. D 84 (2011) 065012 [arXiv:1103.4520] [INSPIRE].

    ADS  Google Scholar 

  23. N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059 [INSPIRE].

  24. P. Grassi, G. Policastro, M. Porrati and P. Van Nieuwenhuizen, Covariant quantization of superstrings without pure spinor constraints, JHEP 10 (2002) 054 [hep-th/0112162] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Grassi, G. Policastro and P. van Nieuwenhuizen, The massless spectrum of covariant superstrings, JHEP 11 (2002) 004 [hep-th/0202123] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Grassi, G. Policastro and P. van Nieuwenhuizen, On the BRST cohomology of superstrings with/without pure spinors, Adv. Theor. Math. Phys. 7 (2003) 499 [hep-th/0206216] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Grassi, G. Policastro and P. van Nieuwenhuizen, The covariant quantum superstring and superparticle from their classical actions, Phys. Lett. B 553 (2003) 96 [hep-th/0209026] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. de Boer, P. Grassi and P. van Nieuwenhuizen, Noncommutative superspace from string theory, Phys. Lett. B 574 (2003) 98 [hep-th/0302078] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Nikolić and B. Sazdović, Type I background fields in terms of type IIB ones, Phys. Lett. B 666 (2008) 400 [arXiv:0804.2617] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nikolić.

Additional information

ArXiv ePrint: 1202.0170

This work was supported in part by the Serbian Ministry of Education and Science, under contract No. 171031.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolić, B., Sazdović, B. Dirichlet boundary conditions in type IIB superstring theory and fermionic T-duality. J. High Energ. Phys. 2012, 101 (2012). https://doi.org/10.1007/JHEP06(2012)101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)101

Keywords

Navigation