Skip to main content
Log in

Dispersive analysis of the scalar form factor of the nucleon

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Based on the recently proposed Roy-Steiner equations for pion-nucleon (πN) scattering [1], we derive a system of coupled integral equations for the \( \pi \pi \to \overline N N \) and \( \overline K K \to \overline N N \) S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including \( \overline K K \) intermediate states. In particular, we determine the correction \( {\Delta_{\sigma }} = \sigma \left( {2M_{\pi }^2} \right) - {\sigma_{{\pi N}}} \), which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, Roy-Steiner equations for pion-nucleon scattering, JHEP 06 (2012) 043 [arXiv:1203.4758] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Cheng and R.F. Dashen, Is SU(2) × SU(2) a better symmetry than SU(3)?, Phys. Rev. Lett. 26 (1971) 594 [INSPIRE].

    Article  ADS  Google Scholar 

  3. L.S. Brown, W. Pardee and R. Peccei, Adler-Weisberger theorem reexamined, Phys. Rev. D 4 (1971) 2801 [INSPIRE].

    ADS  Google Scholar 

  4. V. Bernard, N. Kaiser and U.-G. Meißner, On the analysis of the pion-nucleon sigma term: The Size of the remainder at the Cheng-Dashen point, Phys. Lett. B 389 (1996) 144 [hep-ph/9607245] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Becher and H. Leutwyler, Low energy analysis of πN → πN, JHEP 06 (2001) 017 [hep-ph/0103263] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Gasser, H. Leutwyler and M. Sainio, Form-factor of the sigma term, Phys. Lett. B 253 (1991) 260 [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Höhler, Pion-Nukleon-Streuung: Methoden und Ergebnisse, in Landolt-Börnstein 9b2, H. Schopper eds., Springer Verlag, Berlin Germany (1983).

  9. J. de Swart, M. Rentmeester and R. Timmermans, The Status of the pion-nucleon coupling constant, PiN Newslett. 13 (1997) 96 [nucl-th/9802084] [INSPIRE].

    Google Scholar 

  10. R. Arndt, W. Briscoe, I. Strakovsky and R. Workman, Extended partial-wave analysis of πN scattering data, Phys. Rev. C 74 (2006) 045205[nucl-th/0605082] [INSPIRE]

    ADS  Google Scholar 

  11. V. Baru et al., Precision calculation of the π d scattering length and its impact on threshold πN scattering, Phys. Lett. B 694 (2011) 473 [arXiv:1003.4444] [INSPIRE].

    Article  ADS  Google Scholar 

  12. V. Baru et al., Precision calculation of threshold π d scattering, πN scattering lengths and the GMO sum rule, Nucl. Phys. A 872 (2011) 69 [arXiv:1107.5509] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  14. K.M. Watson, Some general relations between the photoproduction and scattering of π mesons, Phys. Rev. 95 (1954) 228[INSPIRE]

    Article  ADS  MATH  Google Scholar 

  15. B. Moussallam, N (f) dependence of the quark condensate from a chiral sum rule, Eur. Phys. J. C 14 (2000) 111 [hep-ph/9909292] [INSPIRE].

    ADS  Google Scholar 

  16. R. Omnès, On the solution of certain singular integral equations of quantum field theory, Nuovo Cim. 8 (1958) 316[INSPIRE]

    Article  MATH  Google Scholar 

  17. S. Descotes-Genon, Effet des boucles de quarks lègers sur la structure chirale du vide de QCD, Ph.D. Thesis, Université de Paris–Sud, Paris France (2000).

  18. N.I. Muskhelishvili, Singular Integral Equations, Wolters-Noordhoff Publishing, Groningen The Netherlands (1953) [2nd edition, Dover Publications, New York U.S.A. (2008)].

  19. P. Büttiker, S. Descotes-Genon and B. Moussallam, A new analysis of πK scattering from Roy and Steiner type equations, Eur. Phys. J. C 33 (2004) 409 [hep-ph/0310283] [INSPIRE].

    ADS  Google Scholar 

  20. M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγππ, Eur. Phys. J. C 71 (2011) 1743 [arXiv:1106.4147] [INSPIRE].

    Article  ADS  Google Scholar 

  21. I. Caprini, G. Colangelo and H. Leutwyler, Regge analysis of the ππ scattering amplitude, Eur. Phys. J. C 72 (2012) 1860 [arXiv:1111.7160] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I. Caprini, G. Colangelo and H. Leutwyler, in preparation.

  23. D.H. Cohen et al., Amplitude Analysis of the K K + System Produced in the Reactions π pK K + n and π + n → K K + p at 6 GeV/c, Phys. Rev. D 22 (1980) 2595 [INSPIRE].

    ADS  Google Scholar 

  24. A. Etkin et al., Amplitude Analysis of the \( K_S^0K_S^0 \) System Produced in the Reaction \( {\pi^{ - }}p \to K_S^0K_S^0n \) at 23 GeV/c, Phys. Rev. D 25 (1982) 1786 [INSPIRE].

    ADS  Google Scholar 

  25. A. Anisovich et al., Partial wave analysis of \( \overline p p \)π π +, π 0 π0, ηη and ηη′, Nucl. Phys. A 662 (2000) 319 [arXiv:1109.1188] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Arndt, W. Briscoe, I. Strakovsky and R. Workman, Partial-wave analysis and baryon spectroscopy, Eur. Phys. J. A 35 (2008) 311 [INSPIRE].

    Article  ADS  Google Scholar 

  27. SAID, http://gwdac.phys.gwu.edu.

  28. F. Huang, A. Sibirtsev, J. Haidenbauer, S. Krewald and U.-G. Meißner, Backward pion-nucleon scattering, Eur. Phys. J. A 44 (2010) 81 [arXiv:0910.4275] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Hyslop, R. Arndt, L. Roper and R. Workman, Partial wave analysis of K + -nucleon scattering, Phys. Rev. D 46 (1992) 961[INSPIRE]

    ADS  Google Scholar 

  30. H. Hellmann, Einführung in die Quantenchemie, Franz Deuticke, Leipzig Germany (1937).

    Google Scholar 

  31. R. Feynman, Forces in Molecules, Phys. Rev. 56 (1939) 340 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  35. B. Ananthanarayan, I. Caprini, G. Colangelo, J. Gasser and H. Leutwyler, Scalar form-factors of light mesons, Phys. Lett. B 602 (2004) 218 [hep-ph/0409222] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.A. Oller and L. Roca, Scalar radius of the pion and zeros in the form factor, Phys. Lett. B 651 (2007) 139 [arXiv:0704.0039] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. García-Martín, R. Kamiński, J. Peláez, J. Ruiz de Elvira and F. Ynduráin, The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV, Phys. Rev. D 83 (2011) 074004 [arXiv:1102.2183] [INSPIRE].

    ADS  Google Scholar 

  38. B. Moussallam, Couplings of light I = 0 scalar mesons to simple operators in the complex plane, Eur. Phys. J. C 71 (2011) 1814 [arXiv:1110.6074] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125[hep-ph/0103088] [INSPIRE]

    Article  ADS  Google Scholar 

  40. M. Frink, B. Kubis and U.-G. Meißner, Analysis of the pion-kaon sigma term and related topics, Eur. Phys. J. C 25 (2002) 259 [hep-ph/0203193] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Bijnens and P. Dhonte, Scalar form-factors in SU(3) chiral perturbation theory, JHEP 10 (2003) 061 [hep-ph/0307044] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Becher and H. Leutwyler, Baryon chiral perturbation theory in manifestly Lorentz invariant form, Eur. Phys. J. C 9 (1999) 643[hep-ph/9901384] [INSPIRE]

    ADS  Google Scholar 

  43. H. Pagels and W. Pardee, Nonanalytic behavior of the Σ term in π-N scattering, Phys. Rev. D 4 (1971) 3335 [INSPIRE].

    ADS  Google Scholar 

  44. J. Gasser and H. Leutwyler, Quark Masses, Phys. Rept. 87 (1982) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Gasser, M. Sainio and A. Švarc, Nucleons with Chiral Loops, Nucl. Phys. B 307 (1988) 779 [INSPIRE].

    Article  ADS  Google Scholar 

  46. V. Bernard, N. Kaiser and U.-G. Meißner, Critical analysis of baryon masses and sigma terms in heavy baryon chiral perturbation theory, Z. Phys. C 60 (1993) 111 [hep-ph/9303311] [INSPIRE].

    ADS  Google Scholar 

  47. R.A. Arndt, R.L. Workman, I.I. Strakovsky and M.M. Pavan, πN elastic scattering analyses and dispersion relation constraints, nucl-th/9807087 [INSPIRE].

  48. B. Holzenkamp, K. Holinde and J. Speth, A meson exchange model for the hyperon nucleon interaction, Nucl. Phys. A 500 (1989) 485 [INSPIRE].

    Article  ADS  Google Scholar 

  49. W.R. Frazer and J.R. Fulco, Partial-Wave Dispersion Relations for ππ\( N\overline N \), Phys. Rev. 117 (1960) 1603 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hoferichter.

Additional information

ArXiv ePrint: 1204.6251

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoferichter, M., Ditsche, C., Kubis, B. et al. Dispersive analysis of the scalar form factor of the nucleon. J. High Energ. Phys. 2012, 63 (2012). https://doi.org/10.1007/JHEP06(2012)063

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)063

Keywords

Navigation