Skip to main content
Log in

On non-chiral extension of Kerr/CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss possible non-chiral extension of the Kerr/CFT correspondence. We first consider the near horizon geometry of an extremal BTZ black hole and study the asymptotic symmetry. In order to define it properly, we introduce a regularization and show that the asymptotic symmetry becomes the desirable non-chiral Virasoro symmetry with the same central charges for both left and right sectors, which are independent of the regularization parameter. We then investigate the non-chiral extension for general extremal black holes in the zero entropy limit. Since the same geometric structure as above emerges in this limit, we identify non-chiral Virasoro symmetry by a similar procedure. This observation supports the existence of a hidden non-chiral CFT2 structure with the same central charges for both left and right sectors dual to the rotating black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. A.W. Peet, TASI lectures on black holes in string theory, hep-th/0008241 [SPIRES].

  3. G.T. Horowitz and M.M. Roberts, Counting the Microstates of a Kerr Black Hole, Phys. Rev. Lett. 99 (2007) 221601 [arXiv:0708.1346] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. T. Matsuo, Massless radiation from heavy rotating string and Kerr/string correspondence, Nucl. Phys. B 827 (2010) 217 [arXiv:0909.1617] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  6. M.Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

  8. A. Strominger, Black hole entropy from near-horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. H. Lü, J. Mei and C.N. Pope, Kerr/CFT Correspondence in Diverse Dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [SPIRES].

    Article  Google Scholar 

  12. T. Azeyanagi, N. Ogawa and S. Terashima, Holographic Duals of Kaluza-Klein Black Holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Compere, K. Murata and T. Nishioka, Central Charges in Extreme Black Hole/CFT Correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Azeyanagi, G. Compere, N. Ogawa, Y. Tachikawa and S. Terashima, Higher-Derivative Corrections to the Asymptotic Virasoro Symmetry of 4d Extremal Black Holes, Prog. Theor. Phys. 122 (2009) 355 [arXiv:0903.4176] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  16. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black Hole Superradiance From Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Castro and F. Larsen, Near Extremal Kerr Entropy from AdS 2 Quantum Gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. T. Hartman, W. Song and A. Strominger, Holographic Derivation of Kerr-Newman Scattering Amplitudes for General Charge and Spin, JHEP 03 (2010) 118 [arXiv:0908.3909] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. Y. Matsuo, T. Tsukioka and C.-M. Yoo, Another Realization of Kerr/CFT Correspondence, Nucl. Phys. B 825 (2010) 231 [arXiv:0907.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. Y. Matsuo, T. Tsukioka and C.-M. Yoo, Yet Another Realization of Kerr/CFT Correspondence, Europhys. Lett. 89 (2010) 60001 [arXiv:0907.4272] [SPIRES].

    Article  ADS  Google Scholar 

  22. J. Rasmussen, Isometry-preserving boundary conditions in the Kerr/CFT correspondence, Int. J. Mod. Phys. A 25 (2010) 1597 [arXiv:0908.0184] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. J. Rasmussen, A near-NHEK/CFT correspondence, Int. J. Mod. Phys. A 25 (2010) 5517 [arXiv:1004.4773] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. M. Guica and A. Strominger, Wrapped M2/M5 duality, JHEP 10 (2009) 036 [hep-th/0701011] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].

    Article  ADS  Google Scholar 

  27. R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing Extremal Intersecting Giants and New Decoupled Sectors in N =4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing 11d Extremal Intersecting Giants and New Decoupled Sectors in D =3,6 SCFT’s, Phys. Rev. D 81 (2010) 046005 [arXiv:0805.0203] [SPIRES].

    ADS  Google Scholar 

  29. Y. Nakayama, Emerging AdS from Extremally Rotating NS5-branes, Phys. Lett. B 673 (2009) 272 [arXiv:0812.2234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. M. Guica and A. Strominger, Microscopic Realization of the Kerr/CFT Correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  31. G. Compere, W. Song and A. Virmani, Microscopics of Extremal Kerr from Spinning M5 Branes, arXiv:1010.0685.

  32. T. Azeyanagi, N. Ogawa and S. Terashima, Emergent AdS 3 in the Zero Entropy Extremal Black Holes, JHEP 03 (2011) 004 [arXiv:1010.4291] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. Y. Matsuo and T. Nishioka, New Near Horizon Limit in Kerr/CFT, JHEP 12 (2010) 073 [arXiv:1010.4549] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. J. de Boer, M.M. Sheikh-Jabbari and J. Simon, Near Horizon Limits of Massless BTZ and T heir CFT Duals, arXiv:1011.1897 [SPIRES].

  35. V.P. Frolov and K.S. Thorne, Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole, Phys. Rev. D 39 (1989) 2125 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT Correspondence and String Theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. A.P. Porfyriadis and F. Wilczek, Effective Action, Boundary Conditions and Virasoro Algebra for AdS 3, arXiv:1007.1031 [SPIRES].

  39. G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017 [arXiv:0906.3272] [SPIRES].

    Article  ADS  Google Scholar 

  41. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 Black Holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Ogawa.

Additional information

ArXiv ePrint:1102.3423

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azeyanagi, T., Ogawa, N. & Terashima, S. On non-chiral extension of Kerr/CFT. J. High Energ. Phys. 2011, 81 (2011). https://doi.org/10.1007/JHEP06(2011)081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)081

Keywords

Navigation