Skip to main content
Log in

New physics searches at near detectors of neutrino oscillation experiments

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We systematically investigate the prospects of testing new physics with tau sensitive near detectors at neutrino oscillation facilities. For neutrino beams from pion decay, from the decay of radioactive ions, as well as from the decays of muons in a storage ring at a neutrino factory, we discuss which effective operators can lead to new physics effects. Furthermore, we discuss the present bounds on such operators set by other experimental data currently available. For operators with two leptons and two quarks we present the first complete analysis including all relevant operators simultaneously and performing a Markov Chain Monte Carlo fit to the data. We find that these effects can induce tau neutrino appearance probabilities as large as \( \mathcal{O}\left( {{{10}^{ - 4}}} \right) \), which are within reach of forthcoming experiments. We highlight to which kind of new physics a tau sensitive near detector would be most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [SPIRES].

  2. NOvA collaboration, D.S. Ayres et al., NOvA proposal to build a 30-kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI beamline, hep-ex/0503053 [SPIRES].

  3. P. Zucchelli, A novel concept for a anti-nu/e/nu/e neutrino factory: The beta beam, Phys. Lett. B 532 (2002) 166 [SPIRES].

    ADS  Google Scholar 

  4. Beta-beam task group, website: http://beta-beam.web.cern.ch/beta-beam/task/index.asp.

  5. S. Geer, Neutrino beams from muon storage rings: Characteristics and physics potential, Phys. Rev. D 57 (1998) 6989 [hep-ph/9712290] [SPIRES].

    ADS  Google Scholar 

  6. A. De Rujula, M.B. Gavela and P. Hernández, Neutrino oscillation physics with a neutrino factory, Nucl. Phys. B 547 (1999) 21 [hep-ph/9811390] [SPIRES].

    Article  ADS  Google Scholar 

  7. A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [hep-ph/0002108] [SPIRES].

    Article  ADS  Google Scholar 

  8. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  9. International design study of the neutrino factory, website: http://www.hep.ph.ic.ac.uk/ids/.

  10. T. Ota and J. Sato, Can ICARUS and OPERA give information on a new physics?, Phys. Lett. B 545 (2002) 367 [hep-ph/0202145] [SPIRES].

    ADS  Google Scholar 

  11. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the Leptonic Mixing Matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].

    Article  ADS  Google Scholar 

  12. MINOS collaboration, D.G. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [SPIRES].

    Article  ADS  Google Scholar 

  13. Main Injector Non-Standard Interaction Search MINSIS, website: http://www-off-axis.fnal.gov/MINSIS/.

  14. MINSIS workshop in Madird, B.Gavela et al. (2009), website: https://www.ft.uam.es/workshops/neutrino/default.html.

  15. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].

    Article  ADS  Google Scholar 

  16. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Bergmann and Y. Grossman, Can lepton flavor violating interactions explain the LSND results?, Phys. Rev. D 59 (1999) 093005 [hep-ph/9809524] [SPIRES].

    ADS  Google Scholar 

  18. S. Bergmann, Y. Grossman and D.M. Pierce, Can lepton flavor violating interactions explain the atmospheric neutrino problem?, Phys. Rev. D 61 (2000) 053005 [hep-ph/9909390] [SPIRES].

    ADS  Google Scholar 

  19. S. Davidson, S. Forte, P. Gambino, N. Rius and A. Strumia, Old and new physics interpretations of the NuTeV anomaly, JHEP 02 (2002) 037 [hep-ph/0112302] [SPIRES].

    Article  ADS  Google Scholar 

  20. A. Broncano, M.B. Gavela and E.E. Jenkins, The effective Lagrangian for the seesaw model of neutrino mass and leptogenesis, Phys. Lett. B 552 (2003) 177 [hep-ph/0210271] [SPIRES].

    ADS  Google Scholar 

  21. A. Broncano, M.B. Gavela and E.E. Jenkins, Neutrino Physics in the Seesaw Model, Nucl. Phys. B 672 (2003) 163 [hep-ph/0307058] [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Ibarra, E. Masso and J. Redondo, Systematic approach to gauge-invariant relations between lepton flavor violating processes, Nucl. Phys. B 715 (2005) 523 [hep-ph/0410386] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [SPIRES].

    Article  ADS  Google Scholar 

  24. C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [SPIRES].

    Article  ADS  Google Scholar 

  25. C. Biggio, M. Blennow and E. Fernandez-Martinez, Loop bounds on non-standard neutrino interactions, JHEP 03 (2009) 139 [arXiv:0902.0607] [SPIRES].

    Article  ADS  Google Scholar 

  26. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [SPIRES].

    Article  ADS  Google Scholar 

  27. M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [SPIRES].

    ADS  Google Scholar 

  28. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  29. T. Han, I. Lewis and M. Sher, Mu-Tau Production at Hadron Colliders, JHEP 03 (2010) 090 [arXiv:1001.0022] [SPIRES].

    Article  Google Scholar 

  30. D. Black, T. Han, H.-J. He and M. Sher, tau - mu flavor violation as a probe of the scale of new physics, Phys. Rev. D 66 (2002) 053002 [hep-ph/0206056] [SPIRES].

    ADS  Google Scholar 

  31. M.L. Goldberger and S.B. Treiman, Decay of the pi meson, Phys. Rev. 110 (1958) 1178 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022.

    Article  ADS  Google Scholar 

  33. W.I. Weisberger, Unsubtracted Dispersion Relations and the Renormalization of the Weak Axial Vector Coupling Constants, Phys. Rev. 143 (1966) 1302 [SPIRES].

    Article  ADS  Google Scholar 

  34. D.J. Gross, S.B. Treiman and F. Wilczek, Light Quark Masses and Isospin Violation, Phys. Rev. D 19 (1979) 2188 [SPIRES].

    ADS  Google Scholar 

  35. A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, A Possible mechanism for the Delta T = 1/2 rule in nonleptonic decays of strange particles, JETP Lett. 22 (1975) 55 [SPIRES].

    ADS  Google Scholar 

  36. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Light Quarks and the Origin of the Delta I = 1/2 Rule in the Nonleptonic Decays of Strange Particles, Nucl. Phys. B 120 (1977) 316 [SPIRES].

    Article  ADS  Google Scholar 

  37. J.J. Sakurai, Theory of strong interactions, Annals Phys. 11 (1960) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. N.M. Kroll, T.D. Lee and B. Zumino, Neutral Vector Mesons and the Hadronic Electromagnetic Current, Phys. Rev. 157 (1967) 1376 [SPIRES].

    Article  ADS  Google Scholar 

  39. H.B. O’Connell, B.C. Pearce, A.W. Thomas and A.G. Williams, ρω mixing, vector meson dominance and the pion form-factor, Prog. Part. Nucl. Phys. 39 (1997) 201 [hep-ph/9501251] [SPIRES].

    Article  Google Scholar 

  40. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [SPIRES].

    ADS  Google Scholar 

  41. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].

    Article  ADS  Google Scholar 

  43. M. Blennow and E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES, Comput. Phys. Commun. 181 (2010) 227 [arXiv:0903.3985] [SPIRES].

    Article  ADS  Google Scholar 

  44. Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments, Phys. Lett. B 359 (1995) 141 [hep-ph/9507344] [SPIRES].

    ADS  Google Scholar 

  45. M.C. Gonzalez-Garcia, Y. Grossman, A. Gusso and Y. Nir, New CP-violation in neutrino oscillations, Phys. Rev. D 64 (2001) 096006 [hep-ph/0105159] [SPIRES].

    ADS  Google Scholar 

  46. P. Herczeg, A Note on limits on new interactions from the (πe neutrino)/(πμ neutrino) branching ratio, Phys. Rev. D 52 (1995) 3949 [SPIRES].

    ADS  Google Scholar 

  47. J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [SPIRES].

    ADS  Google Scholar 

  48. NOMAD collaboration, P. Astier et al., Final NOMAD results on νμν/τ and ν/eν/τ oscillations including a new search for nu/tau appearance using hadronic tau decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [SPIRES].

    ADS  Google Scholar 

  49. CHORUS collaboration, E. Eskut et al., Final results on ν μ to ν τ oscillation from the CHORUS experiment, Nucl. Phys. B 793 (2008) 326 [arXiv:0710.3361] [SPIRES].

    Article  ADS  Google Scholar 

  50. J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [SPIRES].

    ADS  Google Scholar 

  51. S.K. Agarwalla, S. Rakshit and A. Raychaudhuri, Probing lepton number violating interactions with beta-beams, Phys. Lett. B 647 (2007) 380 [hep-ph/0609252] [SPIRES].

    ADS  Google Scholar 

  52. T. Ohlsson and H. Zhang, Non-Standard Interaction Effects at Reactor Neutrino Experiments, Phys. Lett. B 671 (2009) 99 [arXiv:0809.4835] [SPIRES].

    ADS  Google Scholar 

  53. P. Paradisi, Higgs-mediated τμ and τe transitions in II Higgs doublet model and supersymmetry, JHEP 02 (2006) 050 [hep-ph/0508054] [SPIRES].

    Article  ADS  Google Scholar 

  54. S. Kanemura, T. Ota and K. Tsumura, Lepton flavor violation in Higgs boson decays under the rare tau decay results, Phys. Rev. D 73 (2006) 016006 [hep-ph/0505191] [SPIRES].

    ADS  Google Scholar 

  55. S. Davidson and G. Grenier, Lepton flavour violating Higgs and τμγ, Phys. Rev. D 81 (2010) 095016 [arXiv:1001.0434] [SPIRES].

    ADS  Google Scholar 

  56. K.S. Babu and C. Kolda, Higgs-mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89 (2002) 241802 [hep-ph/0206310] [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Dedes, J.R. Ellis and M. Raidal, Higgs mediated B s,d 0μτ, eτ and τ → 3μ, eμμ decays in supersymmetric seesaw models, Phys. Lett. B 549 (2002) 159 [hep-ph/0209207] [SPIRES].

    ADS  Google Scholar 

  58. A. Brignole and A. Rossi, Anatomy and phenomenology of μτ lepton flavour violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [SPIRES].

    Article  ADS  Google Scholar 

  59. E. Arganda, M.J. Herrero and J. Portoles, Lepton flavour violating semileptonic τ decays in constrained MSSM-seesaw scenarios, JHEP 06 (2008) 079 [arXiv:0803.2039] [SPIRES].

    Article  ADS  Google Scholar 

  60. M.J. Herrero, J. Portoles and A.M. Rodriguez-Sanchez, Sensitivity to the Higgs Sector of SUSY-Seesaw Models in the Lepton Flavour Violating τμ f0(980) decay, Phys. Rev. D 80 (2009) 015023 [arXiv:0903.5151] [SPIRES].

    ADS  Google Scholar 

  61. R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].

    Article  ADS  Google Scholar 

  62. W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in lepton quark collisions, Phys. Lett. B 191 (1987) 442 [SPIRES].

    ADS  Google Scholar 

  63. F. Cuypers and S. Davidson, Bileptons: Present limits and future prospects, Eur. Phys. J. C 2 (1998) 503 [hep-ph/9609487] [SPIRES].

    Article  ADS  Google Scholar 

  64. A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [SPIRES].

    ADS  Google Scholar 

  65. A. Zee, Charged Scalar Field and Quantum Number Violations, Phys. Lett. B 161 (1985) 141 [SPIRES].

    ADS  Google Scholar 

  66. K.S. Babu, Model of ’Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [SPIRES].

    ADS  Google Scholar 

  67. E. Ma, Pathways to Naturally Small Neutrino Masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  68. A. de Gouvêa, G.F. Giudice, A. Strumia and K. Tobe, Phenomenological implications of neutrinos in extra dimensions, Nucl. Phys. B 623 (2002) 395 [hep-ph/0107156] [SPIRES].

    Article  ADS  Google Scholar 

  69. P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [SPIRES].

    ADS  Google Scholar 

  70. P. Langacker and D. London, Mixing Between Ordinary and Exotic Fermions, Phys. Rev. D 38 (1988) 886 [SPIRES].

    ADS  Google Scholar 

  71. E. Nardi, E. Roulet and D. Tommasini, Limits on neutrino mixing with new heavy particles, Phys. Lett. B 327 (1994) 319 [hep-ph/9402224] [SPIRES].

    ADS  Google Scholar 

  72. D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog, Non-decoupling of Heavy Neutrinos and Lepton Flavour Violation, Nucl. Phys. B 444 (1995) 451 [hep-ph/9503228] [SPIRES].

    Article  ADS  Google Scholar 

  73. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].

    ADS  Google Scholar 

  74. G.C. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [SPIRES].

    Article  ADS  Google Scholar 

  75. Z. Berezhiani and A. Rossi, Limits on the non-standard interactions of neutrinos from e + e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [SPIRES].

    ADS  Google Scholar 

  76. S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on non-standard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [SPIRES].

    Article  ADS  Google Scholar 

  77. D. Autiero et al., The synergy of the golden and silver channels at the Neutrino Factory, Eur. Phys. J. C 33 (2004) 243 [hep-ph/0305185] [SPIRES].

    ADS  Google Scholar 

  78. E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [SPIRES].

    ADS  Google Scholar 

  79. S. Goswami and T. Ota, Testing non-unitarity of neutrino mixing matrices at neutrino factories, Phys. Rev. D 78 (2008) 033012 [arXiv:0802.1434] [SPIRES].

    ADS  Google Scholar 

  80. S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [SPIRES].

    ADS  Google Scholar 

  81. D. Meloni, T. Ohlsson, W. Winter and H. Zhang, Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory, JHEP 04 (2010) 041 [arXiv:0912.2735] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Blennow.

Additional information

ArXiv ePrint: 1005.0756

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antusch, S., Blennow, M., Fernandez-Martinez, E. et al. New physics searches at near detectors of neutrino oscillation experiments. J. High Energ. Phys. 2010, 68 (2010). https://doi.org/10.1007/JHEP06(2010)068

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)068

Keywords

Navigation