Skip to main content
Log in

Probing variant axion models at LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study collider implications of variant axion models which naturally avoid the cosmological domain wall problem. We find that in such models the branching ratio of h → γγ can be enhanced by a factor of 5 up to 30 as compared with the standard model prediction. The h → γγ process is therefore a promising channel to discover a light Higgs boson at the LHC and to probe the Peccei-Quinn charge assignment of the standard model fields from Yukawa interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [SPIRES].

    Article  ADS  Google Scholar 

  2. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [SPIRES].

    ADS  Google Scholar 

  3. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [SPIRES].

    ADS  Google Scholar 

  4. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [SPIRES].

    Google Scholar 

  5. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [SPIRES].

    Article  ADS  Google Scholar 

  6. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.D. Peccei, T.T. Wu and T. Yanagida, A viable axion model, Phys. Lett. B 172 (1986) 435 [SPIRES].

    ADS  Google Scholar 

  8. L.M. Krauss and F. Wilczek, A shortlived axion variant, Phys. Lett. B 173 (1986) 189 [SPIRES].

    ADS  Google Scholar 

  9. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [SPIRES].

    Article  ADS  Google Scholar 

  10. F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [SPIRES].

    Article  ADS  Google Scholar 

  11. G.G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, The University of Chicago Press, Chicago & London (1996).

  12. E.W. Kolb and M.S. Turner, The Early Universe. Addison-Wesley, Redwood City, U.S.A. (1990).

  13. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [SPIRES].

    ADS  Google Scholar 

  14. L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [SPIRES].

    ADS  Google Scholar 

  15. M. Dine and W. Fischler, The not-so-harmless axion, Phys. Lett. B 120 (1983) 137 [SPIRES].

    ADS  Google Scholar 

  16. M. Kawasaki, K. Nakayama, T. Sekiguchi, T. Suyama and F. Takahashi, Non-Gaussianity from isocurvature perturbations, JCAP 11 (2008) 019 [arXiv:0808.0009] [SPIRES].

    ADS  Google Scholar 

  17. M. Kawasaki, K. Nakayama, T. Sekiguchi, T. Suyama and F. Takahashi, A General Analysis of Non-Gaussianity from Isocurvature Perturbations, JCAP 01 (2009) 042 [arXiv:0810.0208] [SPIRES].

    ADS  Google Scholar 

  18. P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156 [SPIRES].

    Article  ADS  Google Scholar 

  19. C.Q. Geng and J.N. Ng, The domain wall number in various invisible axion models, Phys. Rev. D 41 (1990) 3848 [SPIRES].

    ADS  Google Scholar 

  20. M. Hindmarsh and P. Moulatsiotis, Constraints on variant axion models, Phys. Rev. D 56 (1997) 8074 [hep-ph/9708281] [SPIRES].

    ADS  Google Scholar 

  21. S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [SPIRES].

    ADS  Google Scholar 

  22. J.L. Hewett and J.D. Wells, Searching for supersymmetry in rare B decays, Phys. Rev. D 55 (1997) 5549 [hep-ph/9610323] [SPIRES].

    ADS  Google Scholar 

  23. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  24. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [SPIRES].

    Article  ADS  Google Scholar 

  25. OPAL collaboration, G. Abbiendi et al., Search for Higgs bosons and other massive states decaying into two photons in e + e collisions at 189GeV, Phys. Lett. B 464 (1999) 311 [hep-ex/9907060] [SPIRES].

    ADS  Google Scholar 

  26. ALEPH collaboration, R. Barate et al., Search for gamma gamma decays of a Higgs boson produced in association with a fermion pair in e + e collisions at LEP, Phys. Lett. B 487 (2000) 241 [hep-ex/0008004] [SPIRES].

    ADS  Google Scholar 

  27. L3 collaboration, M. Acciarri et al., Search for a Higgs boson decaying into two photons in e + e interactions atS = 189GeV, Phys. Lett. B 489 (2000) 115 [hep-ex/0008025] [SPIRES].

    ADS  Google Scholar 

  28. DELPHI collaboration, P. Abreu et al., Search for a fermiophobic Higgs at LEP 2, Phys. Lett. B 507 (2001) 89 [hep-ex/0104025] [SPIRES].

    ADS  Google Scholar 

  29. LEP Higgs Working Group collaboration, Searches for Higgs bosons decaying into photons: Preliminary combined results using LEP data collected at energies up to 209GeV, hep-ex/0107035 [SPIRES].

  30. LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

    ADS  Google Scholar 

  31. I. Baum, G. Eilam and S. Bar-Shalom, Scalar FCNC and rare top decays in a two Higgs doublet model ’for the top’, Phys. Rev. D 77 (2008) 113008 [arXiv:0802.2622] [SPIRES].

    ADS  Google Scholar 

  32. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  33. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  34. M. Spira, HIGLU: A Program for the Calculation of the Total Higgs Production Cross Section at Hadron Colliders via Gluon Fusion including QCD Corrections, hep-ph/9510347 [SPIRES].

  35. H.E. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables, Nucl. Phys. B 161 (1979) 493 [SPIRES].

    Article  ADS  Google Scholar 

  36. J.F. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [SPIRES].

    ADS  Google Scholar 

  37. J.L. Basdevant, E.L. Berger, D. Dicus, C. Kao and S. Willenbrock, Final state interaction of longitudinal vector bosons, Phys. Lett. B 313 (1993) 402 [hep-ph/9211225] [SPIRES].

    ADS  Google Scholar 

  38. A.G. Akeroyd, Fermiophobic Higgs bosons at the Tevatron, Phys. Lett. B 368 (1996) 89 [hep-ph/9511347] [SPIRES].

    ADS  Google Scholar 

  39. B.A. Dobrescu, Minimal composite Higgs model with light bosons, Phys. Rev. D 63 (2001) 015004 [hep-ph/9908391] [SPIRES].

    ADS  Google Scholar 

  40. G.L. Landsberg and K.T. Matchev, Discovering a Light Higgs Boson with Light, Phys. Rev. D 62 (2000) 035004 [hep-ex/0001007] [SPIRES].

    ADS  Google Scholar 

  41. S. Mrenna and J.D. Wells, Detecting a light Higgs boson at the Fermilab Tevatron through enhanced decays to photon pairs, Phys. Rev. D 63 (2001) 015006 [hep-ph/0001226] [SPIRES].

    ADS  Google Scholar 

  42. LEP collaboration, A. Rosca, Fermiophobic Higgs bosons at LEP, hep-ex/0212038 [SPIRES].

  43. CDF collaboration, T. Aaltonen et al., Search for a Fermiophobic Higgs Boson Decaying into Diphotons in p p-bar Collisions at sqrts = 1.96 TeV, Phys. Rev. Lett. 103 (2009) 061803 [arXiv:0905.0413] [SPIRES].

    Article  ADS  Google Scholar 

  44. W. Loinaz and J.D. Wells, Higgs boson interactions in supersymmetric theories with large tan β, Phys. Lett. B 445 (1998) 178 [hep-ph/9808287] [SPIRES].

    ADS  Google Scholar 

  45. M.S. Carena, S. Mrenna and C.E.M. Wagner, MSSM Higgs boson phenomenology at the Tevatron collider, Phys. Rev. D 60 (1999) 075010 [hep-ph/9808312] [SPIRES].

    ADS  Google Scholar 

  46. M.S. Carena, S. Mrenna and C.E.M. Wagner, The complementarity of LEP, the Tevatron and the LHC in the search for a light MSSM Higgs boson, Phys. Rev. D 62 (2000) 055008 [hep-ph/9907422] [SPIRES].

    ADS  Google Scholar 

  47. A. Vilenkin and A.E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett. 48 (1982) 1867 [SPIRES].

    Article  ADS  Google Scholar 

  48. D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys. Lett. B 195 (1987) 361 [SPIRES].

    ADS  Google Scholar 

  49. C. Hagmann and P. Sikivie, Computer simulations of the motion and decay of global strings, Nucl. Phys. B 363 (1991) 247 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Yamaguchi, M. Kawasaki and J. Yokoyama, Evolution of axionic strings and spectrum of axions radiated from them, Phys. Rev. Lett. 82 (1999) 4578 [hep-ph/9811311] [SPIRES].

    Article  ADS  Google Scholar 

  51. D.H. Lyth, Estimates of the cosmological axion density, Phys. Lett. B 275 (1992) 279 [SPIRES].

    ADS  Google Scholar 

  52. M. Nagasawa and M. Kawasaki, Collapse of axionic domain wall and axion emission, Phys. Rev. D 50 (1994) 4821 [astro-ph/9402066] [SPIRES].

    ADS  Google Scholar 

  53. S. Chang, C. Hagmann and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev. D 59 (1999) 023505 [hep-ph/9807374] [SPIRES].

    ADS  Google Scholar 

  54. The ADMX collaboration, S.J. Asztalos et al., A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Ren Chen.

Additional information

ArXiv ePrint: 1005.1185

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CR., Frampton, P.H., Takahashi, F. et al. Probing variant axion models at LHC. J. High Energ. Phys. 2010, 59 (2010). https://doi.org/10.1007/JHEP06(2010)059

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)059

Keywords

Navigation