Skip to main content
Log in

What if \( \mathrm{BR}\left( {h\to \mu \mu } \right)/\mathrm{BR}\left( {h\to \tau \tau } \right)\ne m_{\mu}^2/m_{\tau}^2 \) ?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Measurements of the Yukawa couplings of the recently discovered boson h to fermion pairs will provide a new arena for studying flavor physics. We analyze the lessons that can be learned by measuring the h decay rates into the charged lepton pairs, τ +τ , μ + μ and τ ± μ . We demonstrate how this set of measurements can distinguish in principle between various classes of flavor models such as natural flavor conservation, minimal flavor violation, and Froggatt-Nielsen symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the Higgs, arXiv:1206.4201 [INSPIRE].

  4. ATLAS collaboration, Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127 (2012).

  5. ATLAS collaboration, Search for the Standard Model Higgs boson in H → τ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).

  6. CMS collaboration, Higgs to tau tau (SM) (HCP), CMS-PAS-HIG-12-043 (2012).

  7. T. Han and D. Marfatia, hμτ at hadron colliders, Phys. Rev. Lett. 86 (2001) 1442 [hep-ph/0008141] [INSPIRE].

    Article  ADS  Google Scholar 

  8. U. Cotti, L. Diaz-Cruz, C. Pagliarone and E. Vataga, Search for the lepton flavor violating Higgs decay H → τ μ at hadron colliders, eConf C 010630 (2001) P102 [hep-ph/0111236] [INSPIRE].

  9. K.A. Assamagan, A. Deandrea and P.-A. Delsart, Search for the lepton flavor violating decay A 0 /H 0 → τ ± μ at hadron colliders, Phys. Rev. D 67 (2003) 035001 [hep-ph/0207302] [INSPIRE].

    ADS  Google Scholar 

  10. S. Arcelli, Search for H/Aμμ and τ μ at the LHC, Eur. Phys. J. C 33 (2004) S726 [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Goudelis, O. Lebedev and J.-h. Park, Higgs-induced lepton flavor violation, Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715] [INSPIRE].

    ADS  Google Scholar 

  12. G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

    ADS  Google Scholar 

  13. R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Davidson and P. Verdier, LHC sensitivity to the decay h → τ ± mu , Phys. Rev. D 86 (2012) 111701 [arXiv:1211.1248] [INSPIRE].

    ADS  Google Scholar 

  15. A. Arhrib, Y. Cheng and O.C. Kong, A Comprehensive Analysis on Lepton Flavor Violating Higgs to μτ + τ m¯u Decay in Supersymmetry without R Parity, Phys. Rev. D 87 (2013) 015025 [arXiv:1210.8241] [INSPIRE].

    ADS  Google Scholar 

  16. C.-W. Chiang, T. Nomura and J. Tandean, Effects of Family Nonuniversal ZBoson on Leptonic Decays of Higgs and Weak Bosons, arXiv:1302.2894 [INSPIRE].

  17. A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  19. D.Y. Bardin, B. Vilensky and P.K. Khristova, Calculation of the Higgs boson decay width into fermion pairs, Sov. J. Nucl. Phys. 53 (1991) 152 [Yad. Fiz. 53 (1991) 240] [INSPIRE].

    Google Scholar 

  20. A. Dabelstein and W. Hollik, Electroweak corrections to the fermionic decay width of the standard Higgs boson, Z. Phys. C 53 (1992) 507 [INSPIRE].

    ADS  Google Scholar 

  21. B.A. Kniehl, Radiative corrections for \( H\to f\overline{f}\left( \gamma \right) \) in the standard model, Nucl. Phys. B 376 (1992) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  22. B.A. Kniehl, Higgs phenomenology at one loop in the standard model, Phys. Rept. 240 (1994) 211 [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(Bs,d to μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    ADS  Google Scholar 

  25. H. Arason, D. Castano, B. Keszthelyi, S. Mikaelian et al., Renormalization group study of the standard model and its extensions. 1. The Standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].

    ADS  Google Scholar 

  26. Muon G-2 collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  27. ATLAS collaboration, Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 02 (2013) 095 [arXiv:1211.6956] [INSPIRE].

    ADS  Google Scholar 

  28. CMS collaboration, Search for Neutral MSSM Higgs Bosons in the mu+mu- final state with the CMS experiment in pp Collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-HIG-12-011 (2012).

  29. T. Plehn and D.L. Rainwater, Higgs decays to muons in weak boson fusion, Phys. Lett. B 520 (2001) 108 [hep-ph/0107180] [INSPIRE].

    ADS  Google Scholar 

  30. K. Cranmer and T. Plehn, Maximum significance at the LHC and Higgs decays to muons, Eur. Phys. J. C 51 (2007) 415 [hep-ph/0605268] [INSPIRE].

    Article  ADS  Google Scholar 

  31. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  32. ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS (Update), ATL-PHYS-PUB-2012-004 (2012).

  33. S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  34. E. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].

    ADS  Google Scholar 

  35. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  37. C. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  38. Y. Grossman and Y. Nir, Lepton mass matrix models, Nucl. Phys. B 448 (1995) 30 [hep-ph/9502418] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonit Hochberg.

Additional information

ArXiv ePrint: 1302.3229

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dery, A., Efrati, A., Hochberg, Y. et al. What if \( \mathrm{BR}\left( {h\to \mu \mu } \right)/\mathrm{BR}\left( {h\to \tau \tau } \right)\ne m_{\mu}^2/m_{\tau}^2 \) ?. J. High Energ. Phys. 2013, 39 (2013). https://doi.org/10.1007/JHEP05(2013)039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)039

Keywords

Navigation