Skip to main content
Log in

Constraining new physics with a positive or negative signal of neutrino-less double beta decay

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate numerically how accurately one could constrain the strengths of different short-range contributions to neutrino-less double beta decay in effective field theory. Depending on the outcome of near-future experiments yielding information on the neutrino masses, the corresponding bounds or estimates can be stronger or weaker. A particularly interesting case, resulting in strong bounds, would be a positive signal of neutrino-less double beta decay that is consistent with complementary information from neutrino oscillation experiments, kinematical determinations of the neutrino mass, and measurements of the sum of light neutrino masses from cosmological observations. The keys to more robust bounds are improvements of the knowledge of the nuclear physics involved and a better experimental accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate by the Russian-American gallium solar neutrino experiment during one half of the 22-year cycle of solar activity, J. Exp. Theor. Phys. 95 (2002) 181 [astro-ph/0204245] [SPIRES].

    Article  ADS  Google Scholar 

  2. GNO collaboration, M. Altmann et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616 (2005) 174 [hep-ex/0504037] [SPIRES].

    ADS  Google Scholar 

  3. SNO collaboration, B. Aharmim et al., Measurement of the ν e and total 8 B solar neutrino fluxes with the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [SPIRES].

    ADS  Google Scholar 

  4. Borexino collaboration, C. Arpesella et al., First real time detection of 7 Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101 [arXiv:0708.2251] [SPIRES].

    ADS  Google Scholar 

  5. Super-Kamiokande collaboration, Y. Ashie et al., A measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [SPIRES].

    ADS  Google Scholar 

  6. KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [SPIRES].

    Article  ADS  Google Scholar 

  7. K2K collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].

    ADS  Google Scholar 

  8. MINOS collaboration, P. Adamson et al., A study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam, Phys. Rev. D 77 (2008) 072002 [arXiv:0711.0769] [SPIRES].

    ADS  Google Scholar 

  9. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  10. P. Minkowski, μ → eγ at a rate of one out of 1 billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  11. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan, 13–14 Feb 1979.

  12. S.L. Glashow, The future of elementary particle physics, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687 [SPIRES].

    Google Scholar 

  13. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Print-80-0576 (CERN) [SPIRES].

  14. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  15. C. Aalseth et al., Neutrinoless double beta decay and direct searches for neutrino mass, hep-ph/0412300 [SPIRES].

  16. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76 Ge in Gran Sasso 1990–2003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [SPIRES].

    ADS  Google Scholar 

  17. M. Doi, T. Kotani and E. Takasugi, Double beta decay and Majorana neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1 [SPIRES].

    Article  ADS  Google Scholar 

  18. S.M. Bilenky and S.T. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [SPIRES].

    Article  ADS  Google Scholar 

  19. N. Schmitz, Neutrino physics (in German), Teubner, Stuttgart Germany (1997) [SPIRES].

    Google Scholar 

  20. R.N. Mohapatra, New contributions to neutrinoless double-beta decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [SPIRES].

    ADS  Google Scholar 

  21. B.C. Allanach, C.H. Kom and H. Päs, Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism, Phys. Rev. Lett. 103 (2009) 091801 [arXiv:0902.4697] [SPIRES].

    Article  ADS  Google Scholar 

  22. R.N. Mohapatra, Limits on the mass of the right-handed Majorana neutrino, Phys. Rev. D 34 (1986) 909 [SPIRES].

    ADS  Google Scholar 

  23. V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double beta decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [SPIRES].

    Article  ADS  Google Scholar 

  24. F. Deppisch and H. Päs, Pinning down the mechanism of neutrinoless double beta decay with measurements in different nuclei, Phys. Rev. Lett. 98 (2007) 232501 [hep-ph/0612165] [SPIRES].

    Article  ADS  Google Scholar 

  25. V.M. Gehman and S.R. Elliott, Multiple-isotope comparison for determining 0νββ decay mechanisms, J. Phys. G 34 (2007) 667 [hep-ph/0701099] [SPIRES].

    ADS  Google Scholar 

  26. H. Päs, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A superformula for neutrinoless double beta decay. II: The short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [SPIRES].

    ADS  Google Scholar 

  27. G. Prezeau, M. Ramsey-Musolf and P. Vogel, Neutrinoless double beta decay and effective field theory, Phys. Rev. D 68 (2003) 034016 [hep-ph/0303205] [SPIRES].

    ADS  Google Scholar 

  28. T. Schwetz, M. Tórtola and J.W.F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, arXiv:1103.0734 [SPIRES].

  29. I. Abt et al., A new 76 Ge double beta decay experiment at LNGS, hep-ex/0404039 [SPIRES].

  30. KATRIN collaboration, A. Osipowicz et al., KATRIN: a next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass, hep-ex/0109033 [SPIRES].

  31. Planck collaboration, et al., Planck early results: the Planck mission, arXiv:1101.2022 [SPIRES].

  32. F. Ardellier et al., Letter of intent for double-CHOOZ: a search for the mixing angle θ 13, hep-ex/0405032 [SPIRES].

  33. H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [SPIRES].

    Article  ADS  Google Scholar 

  34. A. Pich, Effective field theory, hep-ph/9806303 [SPIRES].

  35. A.V. Manohar, Effective field theories, in Perturbative and nonperturbative aspects of quantum field theory: proceedings of the 35th “Internationale Universitätswochen für Kernund Teilchenphysik”, Schladming Austria, March 2–9, 1996, Springer, Berlin/London (1997), pg. 311–362 [hep-ph/9606222] [SPIRES].

  36. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [SPIRES].

    Article  ADS  Google Scholar 

  37. H. Päs, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Towards a superformula for neutrinoless double beta decay, Phys. Lett. B 453 (1999) 194 [hep-ph/9804374] [SPIRES].

    ADS  Google Scholar 

  38. N. Severijns, M. Beck and O. Naviliat-Cuncic, Tests of the standard electroweak model in beta decay, Rev. Mod. Phys. 78 (2006) 991 [nucl-ex/0605029] [SPIRES].

    Article  ADS  Google Scholar 

  39. B. Lee Roberts, Muon physics: a pillar of the standard model, J. Phys. Soc. Jap. 76 (2007) 111009 [arXiv:0704.2394] [SPIRES].

    Article  Google Scholar 

  40. A. Faessler, A. Meroni, S.T. Petcov, F. Šimkovic and J. Vergados, Uncovering multiple CP-nonconserving mechanisms of ββ-decay, arXiv:1103.2434 [SPIRES].

  41. A. Faessler, G.L. Fogli, E. Lisi, A.M. Rotunno and F. Šimkovic, Multi-isotope degeneracy of neutrinoless double beta decay mechanisms in the quasi-particle random phase approximation, arXiv:1103.2504 [SPIRES].

  42. M. Chemtob, Phenomenological constraints on broken R parity symmetry in supersymmetry models, Prog. Part. Nucl. Phys. 54 (2005) 71 [hep-ph/0406029] [SPIRES].

    Article  ADS  Google Scholar 

  43. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  44. S. Pascoli, S.T. Petcov and T. Schwetz, The absolute neutrino mass scale, neutrino mass spectrum, Majorana CP-violation and neutrinoless double-beta decay, Nucl. Phys. B 734 (2006) 24 [hep-ph/0505226] [SPIRES].

    Article  ADS  Google Scholar 

  45. M. Lindner, A. Merle and W. Rodejohann, Improved limit on θ 13 and implications for neutrino masses in neutrino-less double beta decay and cosmology, Phys. Rev. D 73 (2006) 053005 [hep-ph/0512143] [SPIRES].

    ADS  Google Scholar 

  46. A. Merle and W. Rodejohann, The elements of the neutrino mass matrix: allowed ranges and implications of texture zeros, Phys. Rev. D 73 (2006) 073012 [hep-ph/0603111] [SPIRES].

    ADS  Google Scholar 

  47. S. Hannestad, Primordial neutrinos, Ann. Rev. Nucl. Part. Sci. 56 (2006) 137 [hep-ph/0602058] [SPIRES].

    Article  ADS  Google Scholar 

  48. S. Hannestad and Y.Y.Y. Wong, Neutrino mass from future high redshift galaxy surveys: sensitivity and detection threshold, JCAP 07 (2007) 004 [astro-ph/0703031] [SPIRES].

    ADS  Google Scholar 

  49. Double-CHOOZ collaboration, C. Palomares, Double-CHOOZ neutrino experiment, PoS(EPS-HEP 2009)275 [arXiv:0911.3227] [SPIRES].

  50. H. Minakata and H. Sugiyama, Lower bound on |U e3|2 from single and double beta decay experiments, Phys. Lett. B 526 (2002) 335 [hep-ph/0111269] [SPIRES].

    ADS  Google Scholar 

  51. A. Merle and W. Rodejohann, Getting information on |U e3|2 from neutrino-less double beta decay, Adv. High Energy Phys. 2007 (2007) 82674 [hep-ph/0703135] [SPIRES].

    Google Scholar 

  52. J. Jochum, Germanium detector array: GERDA, Prog. Part. Nucl. Phys. 64 (2010) 261 [SPIRES].

    Article  ADS  Google Scholar 

  53. X. Liu, GERDA: GERmanium Detector Array — a search for 0νββ decay in 76 Ge, http://physics.sjtu.edu.cn/iwdd09/talks/Second/GERDA_iwdd2009.pdf.

  54. O. Host, O. Lahav, F.B. Abdalla and K. Eitel, Forecasting neutrino masses from combining KATRIN and the CMB: frequentist and Bayesian analyses, Phys. Rev. D 76 (2007) 113005 [arXiv:0709.1317] [SPIRES].

    ADS  Google Scholar 

  55. W. Maneschg, A. Merle and W. Rodejohann, Statistical analysis of future neutrino mass experiments including neutrino-less double beta decay, Europhys. Lett. 85 (2009) 51002 [arXiv:0812.0479] [SPIRES].

    Article  ADS  Google Scholar 

  56. M. Danilov et al., Detection of very small neutrino masses in double-beta decay using laser tagging, Phys. Lett. B 480 (2000) 12 [hep-ex/0002003] [SPIRES].

    ADS  Google Scholar 

  57. EXO collaboration, E. Conti et al., Correlated fluctuations between luminescence and ionization in liquid xenon, Phys. Rev. B 68 (2003) 054201 [hep-ex/0303008] [SPIRES].

    ADS  Google Scholar 

  58. Majorana collaboration, R. Gaitskell et al., White paper on the Majorana zero-neutrino double-beta decay experiment, nucl-ex/0311013 [SPIRES].

  59. H. Ejiri et al., Spectroscopy of double-beta and inverse-beta decays from 100 Mo for neutrinos, Phys. Rev. Lett. 85 (2000) 2917 [nucl-ex/9911008] [SPIRES].

    Article  ADS  Google Scholar 

  60. T. Shima et al., MOON for a next-generation neutrino-less double-beta decay experiment: present status and perspective, J. Phys. Conf. Ser. 120 (2008) 052055 [SPIRES].

    Article  ADS  Google Scholar 

  61. MARE collaboration, A. Nucciotti et al., Neutrino mass calorimetric searches in the MARE experiment, arXiv:1012.2290 [SPIRES].

  62. F. Šimkovic, J. Vergados and A. Faessler, Few active mechanisms of the neutrinoless double beta-decay and effective mass of Majorana neutrinos, Phys. Rev. D 82 (2010) 113015 [arXiv:1006.0571] [SPIRES].

    ADS  Google Scholar 

  63. N.C. Ribeiro, H. Minakata, H. Nunokawa, S. Uchinami and R. Zukanovich-Funchal, Probing non-standard neutrino interactions with neutrino factories, JHEP 12 (2007) 002 [arXiv:0709.1980] [SPIRES].

    Article  Google Scholar 

  64. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading U.S.A. (1995) [SPIRES].

    Google Scholar 

  65. L. Baudis et al., Limits on the Majorana neutrino mass in the 0.1 eV range, Phys. Rev. Lett. 83 (1999) 41 [hep-ex/9902014] [SPIRES].

    Article  ADS  Google Scholar 

  66. F. Šimkovic, private communication.

  67. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Supersymmetry and neutrinoless double beta decay, Phys. Rev. D 53 (1996) 1329 [hep-ph/9502385] [SPIRES].

    ADS  Google Scholar 

  68. F. Šimkovic, G. Pantis, J.D. Vergados and A. Faessler, Additional nucleon current contributions to neutrinoless double beta decay, Phys. Rev. C 60 (1999) 055502 [hep-ph/9905509] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Merle.

Additional information

ArXiv ePrint: 1103.3015

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergström, J., Merle, A. & Ohlsson, T. Constraining new physics with a positive or negative signal of neutrino-less double beta decay. J. High Energ. Phys. 2011, 122 (2011). https://doi.org/10.1007/JHEP05(2011)122

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)122

Keywords

Navigation