Skip to main content
Log in

Holographic superconductors in a model of non-relativistic gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We have studied holographic superconductors with spherical symmetry in the Hořava-Lifshitz gravity by using a semi analytical method, and also we have calculated the critical temperature and shown when the condensation will appear in a similar pattern as in the Einstein-Gauss-Bonnet gravity. We have computed the dependency of the conductivity as a function of frequency in this new non-relativistic model of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  2. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].

    ADS  Google Scholar 

  4. W.-Y. Wen, Inhomogeneous magnetic field in AdS/CFT superconductor, arXiv:0805.1550 [SPIRES].

  5. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  8. K. Maeda and T. Okamura, Characteristic length of an AdS/CFT superconductor, Phys. Rev. D 78 (2008) 106006 [arXiv:0809.3079] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  10. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Hořava, Quantum criticality and Yang-Mills gauge theory, Phys. Lett. B 694 (2010) 172 [arXiv:0811.2217] [SPIRES].

    ADS  Google Scholar 

  12. P. Hořava, Membranes at quantum criticality, JHEP 03 (2009) 020 [arXiv:0812.4287] [SPIRES].

    ADS  Google Scholar 

  13. P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [SPIRES].

    ADS  Google Scholar 

  14. P. Hořava, Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett. 102 (2009) 161301 [arXiv:0902.3657] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Blas, O. Pujolàs and S. Sibiryakov, On the extra mode and inconsistency of Hořava gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [SPIRES].

    Article  ADS  Google Scholar 

  16. A. Kehagias and K. Sfetsos, The black hole and FRW geometries of non-relativistic gravity, Phys. Lett. B 678 (2009) 123 [arXiv:0905.0477] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. M.R. Setare and D. Momeni, Geodesic stability for KS black hole in Hořava-Lifshitz gravity via Lyapunov exponents, Int. J. Theor. Phys. 50 (2011) 106 [arXiv:1001.3767] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Lü, J. Mei and C.N. Pope, Solutions to Hořava gravity, Phys. Rev. Lett. 103 (2009) 091301 [arXiv:0904.1595] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. J.-Z. Tang, Static charged black hole solutions in Hořava-Lifshitz gravity, arXiv:0911.3849 [SPIRES].

  20. R.-G. Cai, L.-M. Cao and N. Ohta, Topological black holes in Hořava-Lifshitz gravity, Phys. Rev. D 80 (2009) 024003 [arXiv:0904.3670] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [SPIRES].

    Article  ADS  Google Scholar 

  22. Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A.B. Pavan, Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [SPIRES].

    ADS  Google Scholar 

  23. Y. Liu, Q. Pan, B. Wang and R.-G. Cai, Dynamical perturbations and critical phenomena in Gauss-Bonnet-AdS black holes, Phys. Lett. B 693 (2010) 343 [arXiv:1007.2536] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. Q. Pan and B. Wang, General holographic superconductor models with backreactions, arXiv:1101.0222 [SPIRES].

  25. Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett. B 693 (2010) 159 [arXiv:1005.4743] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. Y. Brihaye and B. Hartmann, Holographic superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [SPIRES].

    ADS  Google Scholar 

  27. J. Jing, L. Wang and S. Chen, Holographic superconductors in z = 3 Hořava-Lifshitz gravity without condition of detailed balance, arXiv:1001.1472 [SPIRES].

  28. R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, in Gravitation: an introduction to current research, L. Witten ed., John Wiley and Sons Inc., New York U.S.A. (1962) [gr-qc/0405109] [SPIRES].

    Google Scholar 

  29. T.P. Sotiriou, M. Visser and S. Weinfurtner, Phenomenologically viable Lorentz-violating quantum gravity, Phys. Rev. Lett. 102 (2009) 251601 [arXiv:0904.4464] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance, JHEP 10 (2009) 033 [arXiv:0905.2798] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries, Commun. Math. Phys. 66 (1979) 291 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. R.A. Konoplya, Entropic force, holography and thermodynamics for static space-times, Eur. Phys. J. C 69 (2010) 555 [arXiv:1002.2818] [SPIRES].

    Article  ADS  Google Scholar 

  33. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Albash and C.V. Johnson, A holographic superconductor in an external magnetic field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. R.-G. Cai and H.-Q. Zhang, Holographic superconductors with Hořava-Lifshitz black holes, Phys. Rev. D 81 (2010) 066003 [arXiv:0911.4867] [SPIRES].

    ADS  Google Scholar 

  37. P. Kanti and J. March-Russell, Calculable corrections to brane black hole decay. II: Greybody factors for spin 1/2 and 1, Phys. Rev. D 67 (2003) 104019 [hep-ph/0212199] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Gregory, Holographic superconductivity with Gauss-Bonnet gravity, J. Phys. Conf. Ser. 283 (2011) 012016 [arXiv:1012.1558] [SPIRES].

    Article  ADS  Google Scholar 

  41. L. Barclay, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet holographic superconductors, JHEP 12 (2010) 029 [arXiv:1009.1991] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].

    ADS  Google Scholar 

  43. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  44. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Majd.

Additional information

ArXiv ePrint: 1003.0376

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momeni, D., Setare, M.R. & Majd, N. Holographic superconductors in a model of non-relativistic gravity. J. High Energ. Phys. 2011, 118 (2011). https://doi.org/10.1007/JHEP05(2011)118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)118

Keywords

Navigation