Skip to main content
Log in

Some field theoretic issues regarding the chiral magnetic effect

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper, we shall address some field theoretic issues regarding the chiral magnetic effect. The general structure of the chiral magnetic current consistent with the electromagnetic gauge invariance is obtained and the impact of the infrared divergence is examined. Some subtleties on the relation between the chiral magnetic effect and the axial anomaly are clarified through a careful examination of the infrared limit of the relevant thermal diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [SPIRES].

    ADS  Google Scholar 

  2. D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [SPIRES].

    ADS  Google Scholar 

  3. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ’Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [SPIRES].

    ADS  Google Scholar 

  4. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].

    ADS  Google Scholar 

  5. L.D. McLerran, E. Mottola and M.E. Shaposhnikov, Sphalerons and axion dynamics in high temperature QCD, Phys. Rev. D 43 (1991) 2027 [SPIRES].

    ADS  Google Scholar 

  6. G.D. Moore, Computing the strong sphaleron rate, Phys. Lett. B 412 (1997) 359 [hep-ph/9705248] [SPIRES].

    ADS  Google Scholar 

  7. D.E. Kharzeev and D.T. Son, Testing the chiral magnetic and chiral vortical effects in heavy ion collisions, Phys. Rev. Lett. 106 (2011) 062301 [arXiv:1010.0038] [SPIRES].

    Article  ADS  Google Scholar 

  8. D.T. Son and A.R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D 70 (2004) 074018 [hep-ph/0405216] [SPIRES].

    ADS  Google Scholar 

  9. STAR collaboration, S.A. Voloshin, Probe for the strong parity violation effects at RHIC with three particle correlations, arXiv:0806.0029 [SPIRES].

  10. STAR collaboration, B.I. Abelev et al., Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [SPIRES].

    Article  ADS  Google Scholar 

  11. F. Wang, Effects of Cluster Particle Correlations on Local Parity Violation Observables, Phys. Rev. C 81 (2010) 064902 [arXiv:0911.1482] [SPIRES].

    ADS  Google Scholar 

  12. M. Asakawa, A. Majumder and B. Müller, Electric Charge Separation in Strong Transient Magnetic Fields, Phys. Rev. C 81 (2010) 064912 [arXiv:1003.2436] [SPIRES].

    ADS  Google Scholar 

  13. D.E. Kharzeev and H.J. Warringa, Chiral Magnetic conductivity, Phys. Rev. D 80 (2009) 034028 [arXiv:0907.5007] [SPIRES].

    ADS  Google Scholar 

  14. H.-U. Yee, Holographic Chiral Magnetic Conductivity, JHEP 11 (2009) 085 [arXiv:0908.4189] [SPIRES].

    Article  ADS  Google Scholar 

  15. A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [SPIRES].

    Article  ADS  Google Scholar 

  16. A. Gorsky, P.N. Kopnin and A.V. Zayakin, On the Chiral Magnetic Effect in Soft-Wall AdS/QCD, Phys. Rev. D 83 (2011) 014023 [arXiv:1003.2293] [SPIRES].

    ADS  Google Scholar 

  17. V.A. Rubakov, On chiral magnetic effect and holography, arXiv:1005.1888 [SPIRES].

  18. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [SPIRES].

    Article  ADS  Google Scholar 

  19. L. Brits and J. Charbonneau, A Constraint-Based Approach to the Chiral Magnetic Effect, arXiv:1009.4230 [SPIRES].

  20. T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect, arXiv:1102.4334 [SPIRES].

  21. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya and M.I. Polikarpov, Numerical evidence of chiral magnetic effect in lattice gauge theory, Phys. Rev. D 80 (2009) 054503 [arXiv:0907.0494] [SPIRES].

    ADS  Google Scholar 

  22. P.V. Buividovich et al., Magnetic-Field-Induced insulator-conductor transition in SU(2) quenched lattice gauge theory, Phys. Rev. Lett. 105 (2010) 132001 [arXiv:1003.2180] [SPIRES].

    Article  ADS  Google Scholar 

  23. W.-j. Fu, Y.-x. Liu and Y.-l. Wu, Chiral Magnetic Effect and QCD Phase Transitions with Effective Models, arXiv:1003.4169 [SPIRES].

  24. D.K. Hong, Anomalous currents in dense matter under a magnetic field, arXiv:1010.3923 [SPIRES].

  25. K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and Nonequilibrium Formalisms Made Unified, Phys. Rept. 118 (1985) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [SPIRES].

    Google Scholar 

  27. P.C. Martin and J. Schwinger, Theory of many-particle systems I, Phys. Rev. 115 (1959) 1342.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. N.P. Landsman and C.G. van Weert, Real and Imaginary Time Field Theory at Finite Temperature and Density, Phys. Rept. 145 (1987) 141 [SPIRES].

    Article  ADS  Google Scholar 

  29. P.A. Henning, Thermo field dynamics for quantum fields with continuous mass spectrum, Phys. Rept. 253 (1995) 235 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. A.D. Linde, Infrared Problem in Thermodynamics of the Yang-Mills Gas, Phys. Lett. B 96 (1980) 289 [SPIRES].

    ADS  Google Scholar 

  31. G. Baym and N.D. Mermin, Determination of Thermodynamic Green’s Functions, J. Math. Phys. 2 (1961) 232.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. H. Itoyama and A.H. Mueller, The axial anomaly at finite temperature, Nucl. Phys. B 218 (1983) 349 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-fu Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Df., Liu, H. & Ren, Hc. Some field theoretic issues regarding the chiral magnetic effect. J. High Energ. Phys. 2011, 46 (2011). https://doi.org/10.1007/JHEP05(2011)046

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)046

Keywords

Navigation