Skip to main content
Log in

d + id holographic superconductors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A holographic model of d+ id superconductors based on the action proposed by Benini, Herzog, and Yarom [arXiv:1006.0731] is studied. This model has a charged spin two field in an AdS black hole spacetime. Working in the probe limit, the normalizable solution of the spin two field in the bulk gives rise to a d+ id superconducting order parameter at the boundary of the AdS. We calculate the fermion spectral function in this superconducting background and confirm the existence of fermi arcs for non-vanishing Majorana couplings. By changing the relative strength γ of the d and id condensations, the position and the size of the fermi arcs are changed. When γ = 1, the spectrum becomes isotropic and the spectral function is s-wave like. By changing the fermion mass, the fermi momentum is changed. We also calculate the conductivity for these holographic d + id superconductors where time reversal symmetry has been broken spontaneously. A non-vanishing Hall conductivity is obtained even without an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Lee, N. Nagaosa and X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78 (2006) 17 [SPIRES].

    Article  ADS  Google Scholar 

  2. C.C. Tsuei and J.R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72 (2000) 969 [SPIRES].

    Article  ADS  Google Scholar 

  3. P.W. Anderson, The Resonating valence bond state in La-2 CuO-4 and superconductivity, Science 235 (1987) 1196 [SPIRES].

    Article  ADS  Google Scholar 

  4. P.W. Andersson, The Theory of Superconductivity in the High Tc Cuprates, Princeton University Press, Princeton U.S.A. (1997).

    Google Scholar 

  5. G. Baskaran and P.W. Anderson, Gauge theory of high temperature superconductors and strongly correlated Fermi systems, Phys. Rev. B 37 (1988) 580 [SPIRES].

    ADS  Google Scholar 

  6. L.B. Ioffe and A.I. Larkin, Gapless fermions and gauge fields in dielectrics, Phys. Rev. B 39 (1989) 8988 [SPIRES].

    ADS  Google Scholar 

  7. N. Nagaosa and P.A. Lee, Normal-state properties of the uniform resonating-valence-bond state, Phys. Rev. Lett. 64 (1990) 2450.

    Article  ADS  Google Scholar 

  8. X.-G. Wen and P.A. Lee, Theory of Underdoped Cuprates, Phys. Rev. Lett. 76 (1996) 503.

    Article  ADS  Google Scholar 

  9. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  10. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  12. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N =4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].

    Article  ADS  Google Scholar 

  13. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N =4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [SPIRES].

    Article  ADS  Google Scholar 

  15. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].

    ADS  Google Scholar 

  18. S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  22. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  23. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  25. R.A. Konoplya and A. Zhidenko, Holographic conductivity of zero temperature superconductors, Phys. Lett. B 686 (2010) 199 [arXiv:0909.2138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Nakano and W.-Y. Wen, Critical magnetic field in a holographic superconductor, Phys. Rev. D 78 (2008) 046004 [arXiv:0804.3180] [SPIRES].

    ADS  Google Scholar 

  28. T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. C.-Y. Huang, F.-L. Lin and D. Maity, Holographic Multi-Band Superconductor, arXiv:1102.0977 [SPIRES].

  30. J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-Dip-Hump from Holographic Superconductivity, Phys. Rev. D 82 (2010) 026007 [arXiv:0911.2821] [SPIRES].

    ADS  Google Scholar 

  31. T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121 [arXiv:0911.3402] [SPIRES].

    Article  ADS  Google Scholar 

  32. S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087 [arXiv:0911.3632] [SPIRES].

    Article  ADS  Google Scholar 

  33. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].

    Article  Google Scholar 

  35. M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [SPIRES].

    Article  ADS  Google Scholar 

  36. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped Holographic Superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [SPIRES].

    ADS  Google Scholar 

  37. S.S. Gubser, F.D. Rocha and A. Yarom, Fermion correlators in non-abelian holographic superconductors, JHEP 11 (2010) 085 [arXiv:1002.4416] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Ammon, J. Erdmenger, M. Kaminski and A. O’Bannon, Fermionic Operator Mixing in Holographic p-wave Superfluids, JHEP 05 (2010) 053 [arXiv:1003.1134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Vegh, Fermi arcs from holography, arXiv:1007.0246 [SPIRES].

  40. J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [SPIRES].

    ADS  Google Scholar 

  41. C.P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D 81 (2010) 126009 [arXiv:1003.3278] [SPIRES].

    ADS  Google Scholar 

  42. F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, arXiv:1006.0731 [SPIRES].

  43. F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, Characteristic length of a Holographic Superconductor with d-wave gap, Phys. Rev. D 82 (2010) 126014 [arXiv:1006.5483] [SPIRES].

    ADS  Google Scholar 

  45. H.-B. Zeng, Z.-Y. Fan and H.-S. Zong, d-wave Holographic Superconductor Vortex Lattice and Non-Abelian Holographic Superconductor Droplet, Phys. Rev. D 82 (2010) 126008 [arXiv:1007.4151] [SPIRES].

    ADS  Google Scholar 

  46. Q. Pan and B. Wang, General holographic superconductor models with backreactions, arXiv:1101.0222 [SPIRES].

  47. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  48. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].

    Article  ADS  Google Scholar 

  50. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. S.-J. Rey, String theory on thin semiconductors: Holographic realization of Fermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  52. K. Peeters, J. Powell and M. Zamaklar, Exploring colourful holographic superconductors, JHEP 09 (2009) 101 [arXiv:0907.1508] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. M. Covington et al., Observation of Surface-Induced Broken Time-Reversal Symmetry in YBa 2 Cu 3 O 7 Tunnel Junctions, Phys. Rev. Lett. 79 (1997) 277 [SPIRES].

    Article  ADS  Google Scholar 

  58. R. Krupke and G. Deutscher, Anisotropic magnetic field dependence of the zero-bias anomaly on in-plane oriented [100] Y 1 Ba 2 Cu 3 O 7−x /In tunnel juctions, Phys. Rev. Lett. 83 (1999) 4634.

    Article  ADS  Google Scholar 

  59. R. Carmi, E. Polturak, G. Koren and A. Auerbach, Spontaneous macroscopic magnetization at the superconducting transition temperature of Y Ba 2 Cu 3 O 7−δ, Nature 404 (2000) 853.

    Article  ADS  Google Scholar 

  60. G. Deutscher, Y. Dagan, A. Kohen and R. Krupke, Field induced and spontaneous sub-gap in [110] and [100] oriented Y BCO films: indication for a \( {d_{{x^2} - {y^2}}} + i{d_{xy}} \) order parameter, Physica C 341–348 (2000) 1629.

    Google Scholar 

  61. Y. Dagan and G. Deutscher, On the origin of time reversal symmetry breaking in Y 1−y Ca y Ba 2 Cu 3 O 7−x , Europhys. Lett. 57 (2002) 444.

    Article  ADS  Google Scholar 

  62. R.B. Laughlin, Magnetic Induction of \( {d_{{x^2} - {y^2}}} + i{d_{xy}} \) Order in High-T c Superconductors, Phys. Rev. Lett. 80 (1998) 5188 [SPIRES].

    Article  ADS  Google Scholar 

  63. J. Goryo and K. Ishikawa, On induced Chern-Simons term in P-and T-violating superconductors, Phys. Lett. A 260 (1999) 294 [cond-mat/9812412] [SPIRES].

    ADS  Google Scholar 

  64. I.L. Buchbinder, D.M. Gitman and V.D. Pershin, Causality of massive spin 2 field in external gravity, Phys. Lett. B 492 (2000) 161 [hep-th/0006144] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  65. P. Federbush, Minimal electromagnetic coupling for spin two particles, Nuovo Cim. 19 (1961) 572.

    Article  MathSciNet  Google Scholar 

  66. G. Velo, Anomalous behaviour of a massive spin two charged particle in an external electromagnetic field, Nucl. Phys. B 43 (1972) 389 [SPIRES].

    Article  ADS  Google Scholar 

  67. M. Porrati and R. Rahman, Electromagnetically Interacting Massive Spin-2 Field: Intrinsic Cutoff and Pathologies in External Fields, arXiv:0809.2807 [SPIRES].

  68. M. Porrati and R. Rahman, A Model Independent Ultraviolet Cutoff for Theories with Charged Massive Higher Spin Fields, Nucl. Phys. B 814 (2009) 370 [arXiv:0812.4254] [SPIRES].

    Article  ADS  Google Scholar 

  69. I.L. Buchbinder, D.M. Gitman, V.A. Krykhtin and V.D. Pershin, Equations of motion for massive spin 2 field coupled to gravity, Nucl. Phys. B 584 (2000) 615 [hep-th/9910188] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  70. M. Kobayashi and A. Shamaly, The tenth constraint in the minimally coupled Spin-2 wave equations, Prog. Theor. Phys. 61 (1979) 656 [SPIRES].

    Article  ADS  Google Scholar 

  71. G. Velo and D. Zwanziger, Noncausality and other defects of interaction lagrangians for particles with spin one and higher, Phys. Rev. 188 (1969) 2218 [SPIRES].

    Article  ADS  Google Scholar 

  72. Y.M. Zinoviev, On massive spin 2 electromagnetic interactions, Nucl. Phys. B 821 (2009) 431 [arXiv:0901.3462] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  73. N.T. Evans, Discrete Series for the Universal Covering Group of the 3 + 2 de Sitter Group, J. Math. Phys. 8 (1967) 170.

    Article  ADS  MATH  Google Scholar 

  74. G. Mack, All Unitary Ray Representations of the Conformal Group SU(2, 2) with Positive Energy, Commun. Math. Phys. 55 (1977) 1 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [SPIRES].

    Google Scholar 

  76. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  77. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [SPIRES].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  79. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. M.R. Norman et al., Destruction of the Fermi surface in underdoped high-Tc superconductors, Nature 392 (1998) 157

    Article  ADS  Google Scholar 

  81. A. Kanigel et al., Evolution of the pseudogap from Fermi arcs to the nodal liquid, Nat. Phys. 2 (2006) 447.

    Article  Google Scholar 

  82. A. Kanigel et al., Protected Nodes and the Collapse of Fermi Arcs in High-Tc Cuprate Superconductors, Phys. Rev. Lett. 99 (2007) 157001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debaprasad Maity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JW., Liu, YS. & Maity, D. d + id holographic superconductors. J. High Energ. Phys. 2011, 32 (2011). https://doi.org/10.1007/JHEP05(2011)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)032

Keywords

Navigation