Skip to main content
Log in

Higher spin currents in the \( \mathcal{N} \) = 1 stringy coset minimal model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

This study reconsidered the \( \mathcal{N} \) = 1 supersymmetric extension of the W 3 algebra which was studied previously. This extension consists of seven higher spin supercurrents (fourteen higher spin currents in the components) as well as the \( \mathcal{N} \) = 1 stress energy tensor of spins \( \left( {\frac{3}{2},2} \right) \). Thus far, the complete expressions for the higher spin currents have not been derived.

This paper constructs them explicitly in both the c = 4 eight free fermion model and the supersymmetric coset model based on \( \left( {A_2^{(1)}\oplus A_2^{(1) },A_2^{(1) }} \right) \) at level (3, k). By acting with the above \( \mathrm{spin}\hbox{-}\frac{3}{2} \) current on the higher spin-3 Casimir current, its fermionic partner, the higher \( \mathrm{spin}\hbox{-}\frac{5}{2} \) current, can be generated and combined as a first higher spin supercurrent with spins \( \left( {\frac{5}{2},3} \right) \). By calculating the operator product expansions (OPE) between the higher spin supercurrent and itself, the next two higher spin supercurrents can be generated with spins \( \left( {\frac{7}{2},4} \right) \) and \( \left( {4,\frac{9}{2}} \right) \). Moreover, the other two higher spin supercurrents with spins \( \left( {4,\frac{9}{2}} \right) \) and \( \left( {\frac{9}{2},5} \right) \) can be generated by calculating the OPE between the first higher spin supercurrent with spins \( \left( {\frac{5}{2},3} \right) \) and the second higher spin supercurrent with spins \( \left( {\frac{7}{2},4} \right) \). Finally, the higher spin supercurrents, \( \left( {\frac{11 }{2},6} \right) \) and \( \left( {6,\frac{13 }{2}} \right) \), can be extracted from the right hand side of the OPE between the higher spin supercurrents, \( \left( {\frac{5}{2},3} \right) \) and \( \left( {4,\frac{9}{2}} \right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  2. M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography, JHEP 07 (2012) 127 [arXiv:1205.2472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Ahn, The Large-Nt Hooft Limit of Coset Minimal Models, JHEP 10 (2011) 125 [arXiv:1106.0351] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M.R. Gaberdiel and C. Vollenweider, Minimal Model Holography for SO(2N), JHEP 08 (2011) 104 [arXiv:1106.2634] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3−D AdS space-time, Nucl. Phys. B 545(1999) 385[hep-th/9806236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Creutzig, Y. Hikida and P.B. Ronne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS 3, arXiv:1203.1939 [INSPIRE].

  9. M. Henneaux, G. Lucena Gomez, J. Park and S.-J. Rey, Super-W Asymptotic Symmetry of Higher-Spin AdS 3 Supergravity, JHEP 06 (2012) 037 [arXiv:1203.5152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. K. Hanaki and C. Peng, Symmetries of Holographic Super-Minimal Models, arXiv:1203.5768 [INSPIRE].

  11. C. Ahn, The Large-Nt Hooft Limit of Kazama-Suzuki Model, JHEP 08 (2012) 047 [arXiv:1206.0054] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Candu and M.R. Gaberdiel, Duality in N = 2 Minimal Model Holography, JHEP 02 (2013) 070 [arXiv:1207.6646] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Ahn, The Operator Product Expansion of the Lowest Higher Spin Current at Finite N, JHEP 01 (2013) 041 [arXiv:1208.0058] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Creutzig, Y. Hikida and P.B. Rønne, N = 1 supersymmetric higher spin holography on AdS 3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Coset Construction for Extended Virasoro Algebras, Nucl. Phys. B 304 (1988) 371 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Ahn, The Coset Spin-4 Casimir Operator and Its Three-Point Functions with Scalars, JHEP 02 (2012) 027 [arXiv:1111.0091] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, arXiv:1207.6697 [INSPIRE].

  18. R. Gopakumar, A. Hashimoto, I.R. Klebanov, S. Sachdev and K. Schoutens, Strange Metals in One Spatial Dimension, Phys. Rev. D 86 (2012) 066003 [arXiv:1206.4719] [INSPIRE].

    ADS  Google Scholar 

  19. M.R. Douglas, G/H Conformal Field Theory, CALT-68-1453.

  20. K. Schoutens and A. Sevrin, Minimal superW N algebras in coset conformal field theories, Phys. Lett. B 258 (1991) 134 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. C.-H. Ahn, K. Schoutens and A. Sevrin, The full structure of the super W 3 algebra, Int. J. Mod. Phys. A 6 (1991) 3467 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. K. Hornfeck and É. Ragoucy, A coset construction for the super W 3 algebra, Nucl. Phys. B 340 (1990) 225 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Inami, Y. Matsuo and I. Yamanaka, Extended conformal algebras with N = 1 supersymmetry, Phys. Lett. B 215 (1988) 701 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Extensions of the Virasoro Algebra Constructed from Kac-Moody Algebras Using Higher Order Casimir Invariants, Nucl. Phys. B 304 (1988) 348 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Bowcock, Quasi-primary fields and associativity of chiral algebras, Nucl. Phys. B 356 (1991) 367 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Blumenhagen, M. Flohr, A. Kliem, W. Nahm, A. Recknagel and R. Varnhagen, W algebras with two and three generators, Nucl. Phys. B 361 (1991) 255 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. W. Nahm, Algebras of two-dimensional chiral fields and their classification, in proceedings of III Regional Conference on Mathematical Physics, Islamabad, Pakistan, 17-24 February 1989, pg. 283. [INSPIRE]

  29. W. Nahm, Chiral algebras of two-dimensional chiral field theories and their normal ordered products, in proceedings of Trieste Conference on Recent Developments in Conformal Field Theories, Trieste, Italy, 2-4 Oct. 1989, pg. 81. [INSPIRE]

  30. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: A review, arXiv:1208.5182 [INSPIRE].

  31. E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, arXiv:1210.8452 [INSPIRE].

  32. J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Creutzig and A.R. Linshaw, The super W 1+∞ algebra with integral central charge, arXiv:1209.6032 [INSPIRE].

  34. B. Chen, J. Long and Y.-N. Wang, Black holes in Truncated Higher Spin AdS 3 Gravity, JHEP 12 (2012) 052 [arXiv:1209.6185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Taronna, Higher-Spin Interactions: three-point functions and beyond, arXiv:1209.5755 [INSPIRE].

  36. S. Banerjee, A. Castro, S. Hellerman, E. Hijano, A. Lepage-Jutier, A. Maloney and S. Shenker, Smoothed Transitions in Higher Spin AdS Gravity, arXiv:1209.5396 [INSPIRE].

  37. P. Kraus and E. Perlmutter, Probing higher spin black holes, JHEP 02 (2013) 096 [arXiv:1209.4937] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Lal and B. Sahoo, Holographic Renormalisation for the Spin-3 Theory and the (A)dS 3 /CFT2 correspondence, JHEP 01 (2013) 004 [arXiv:1209.4804] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravity - General recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].

    Article  ADS  Google Scholar 

  40. I. Fujisawa and R. Nakayama, Second-Order Formalism for 3D Spin-3 Gravity, Class. Quant. Grav. 30 (2013) 035003 [arXiv:1209.0894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Fredenhagen and C. Restuccia, The geometry of the limit of N = 2 minimal models, J. Phys. A 46 (2013) 045402 [arXiv:1208.6136] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. H. Tan, Exploring Three-dimensional Higher-Spin Supergravity based on sl(N |N − 1) Chern-Simons theories, JHEP 11 (2012) 063 [arXiv:1208.2277] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, arXiv:1208.1851 [INSPIRE].

  44. K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. C. Ahn, The Primary Spin-4 Casimir Operators in the Holographic SO(N ) Coset Minimal Models, JHEP 05 (2012) 040 [arXiv:1202.0074] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. P. Bowcock and G. Watts, On the classification of quantum W algebras, Nucl. Phys. B 379 (1992) 63 [hep-th/9111062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. M.R. Gaberdiel and P. Suchanek, Limits of Minimal Models and Continuous Orbifolds, JHEP 03 (2012) 104 [arXiv:1112.1708] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. T. Creutzig, Y. Hikida and P.B. Ronne, Three point functions in higher spin AdS 3 supergravity, JHEP 01 (2013) 171 [arXiv:1211.2237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. H. Moradi and K. Zoubos, Three-Point Functions in N = 2 Higher-Spin Holography, arXiv:1211.2239 [INSPIRE].

  53. K. Thielemans, An Algorithmic approach to operator product expansions, W algebras and W strings, hep-th/9506159 [INSPIRE].

  54. R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck and R. Hubel, Coset realization of unifying W algebras, Int. J. Mod. Phys. A 10 (1995) 2367 [hep-th/9406203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhyun Ahn.

Additional information

ArXiv ePrint: 1211.2589

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, C. Higher spin currents in the \( \mathcal{N} \) = 1 stringy coset minimal model. J. High Energ. Phys. 2013, 33 (2013). https://doi.org/10.1007/JHEP04(2013)033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)033

Keywords

Navigation