Skip to main content
Log in

Electroweak W+W jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an implementation of electroweak W + W jj production at hadron colliders in the POWHEG framework, a method that allows the interfacing of a next-to-leading order QCD calculation with parton shower Monte Carlo programs. We provide results for both, fully and semi-leptonic decay modes of the weak bosons, taking resonant and non-resonant contributions and spin correlations of the final-state particles into account. To illustrate the versatility of our implementation, we provide phenomenological results for two representative scenarios with a light and with a heavy Higgs boson, respectively, and in a kinematic regime of highly boosted gauge bosons. The impact of the parton shower is found to depend on the setup and the observable under investigation. In particular, distributions related to a central-jet veto are more sensitive to these effects. Therefore the impact of radiation by the parton shower on next-to-leading order predictions should be assessed carefully on a case-by-case basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. CDF, D0 collaboration, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Measuring Higgs boson couplings at the CERN LHC, Phys. Rev. D 62 (2000) 013009 [hep-ph/0002036] [INSPIRE].

    ADS  Google Scholar 

  5. M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].

    ADS  Google Scholar 

  6. LHC Higgs Cross section Working Group, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].

  7. D.L. Rainwater and D. Zeppenfeld, Observing HW W e ± μ T in weak boson fusion with dual forward jet tagging at the CERN LHC, Phys. Rev. D 60 (1999) 113004 [Erratum ibid. D 61 (2000) 099901] [hep-ph/9906218] [INSPIRE].

    ADS  Google Scholar 

  8. N. Kauer, T. Plehn, D.L. Rainwater and D. Zeppenfeld, HW + W as the discovery mode for a light Higgs boson, Phys. Lett. B 503 (2001) 113 [hep-ph/0012351] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D.L. Rainwater and D. Zeppenfeld, Searching for H → γγ in weak boson fusion at the LHC, JHEP 12 (1997) 005 [hep-ph/9712271] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for H → τ +τ in weak boson fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE].

    ADS  Google Scholar 

  11. B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W production via vector-boson fusion, JHEP 07 (2006) 015 [hep-ph/0603177] [INSPIRE].

    Article  Google Scholar 

  12. B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev. D 73 (2006) 113006 [hep-ph/0604200] [INSPIRE].

    ADS  Google Scholar 

  13. G. Bozzi, B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + Z and W Z production via vector-boson fusion, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105] [INSPIRE].

    ADS  Google Scholar 

  14. B. Jäger, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W + jj and W W jj production via weak-boson fusion, Phys. Rev. D 80 (2009) 034022 [arXiv:0907.0580] [INSPIRE].

    ADS  Google Scholar 

  15. A. Denner, L. Hosekova and S. Kallweit, NLO QCD corrections to W + W + jj production in vector-boson fusion at the LHC, Phys. Rev. D 86 (2012) 114014 [arXiv:1209.2389] [INSPIRE].

    ADS  Google Scholar 

  16. B. Jäger and G. Zanderighi, NLO corrections to electroweak and QCD production of W + W + plus two jets in the POWHEGBOX, JHEP 11 (2011) 055 [arXiv:1108.0864] [INSPIRE].

    Article  Google Scholar 

  17. G. Marchesini et al., HERWIG: A Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1April 1991, Comput. Phys. Commun. 67 (1992) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosonsManual for Version 2.5.0, arXiv:1107.4038 [INSPIRE].

  25. K. Arnold et al., Release note - Vbfnlo-2.6.0, arXiv:1207.4975 [INSPIRE].

  26. M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [INSPIRE].

    ADS  Google Scholar 

  27. S. Groote, J. Korner and P. Tuvike, Fully analytical Os) results for on-shell and off-shell polarized W-boson decays into massive quark pairs, arXiv:1301.0881 [INSPIRE].

  28. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B. Jager, S. Schneider and G. Zanderighi, Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEGBOX, JHEP 09 (2012) 083 [arXiv:1207.2626] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037 [arXiv:0911.5299] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155 GeV—180 GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [INSPIRE].

    ADS  Google Scholar 

  36. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  40. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  41. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the HW W (∗) → ℓνℓν channel with the ATLAS detector, ATLAS-CONF-2012-098 (2012).

  42. K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  43. V.D. Barger, R. Phillips and D. Zeppenfeld, Mini-jet veto: a tool for the heavy Higgs search at the LHC, Phys. Lett. B 346 (1995) 106 [hep-ph/9412276] [INSPIRE].

    Article  ADS  Google Scholar 

  44. ATLAS collaboration, Search for the Higgs boson in the HW Wlνjj decay channel at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 718(2012) 391 [arXiv:1206.6074] [INSPIRE].

    ADS  Google Scholar 

  45. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Butterworth, B. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].

    ADS  Google Scholar 

  47. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Zanderighi.

Additional information

ArXiv ePrint: 1301.1695

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, B., Zanderighi, G. Electroweak W+W jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX. J. High Energ. Phys. 2013, 24 (2013). https://doi.org/10.1007/JHEP04(2013)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)024

Keywords

Navigation