Skip to main content
Log in

Holographic flows to IR Lifshitz spacetimes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently we studied ‘vanishing’ horizon limits of ‘boosted’ black D3-brane geometry [1]. The type IIB solutions obtained by taking these special double limits were found to describe nonrelativistic Lifshitz spacetimes at zero temperature. In the present work we study these limits for TsT black-hole solutions which include B-field. The new Galilean solutions describe a holographic RG flow from Schrödinger (a = 2) spacetime in UV to a nonrelativistic universe in the IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Singh, Special limits and non-relativistic solutions, JHEP 12 (2010) 061 [arXiv:1009.0651] [SPIRES].

    Article  ADS  Google Scholar 

  2. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [SPIRES].

    ADS  Google Scholar 

  5. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza–Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].

    Article  ADS  Google Scholar 

  9. A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB Solutions with Schródinger Symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. C. Duval, M. Hassaine and P.A. Horvathy, The geometry of Schródinger symmetry in gravity background/non-relativistic CFT, Annals Phys. 324 (2009) 1158 [arXiv:0809.3128] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Singh, Galilean anti-de-Sitter spacetime in Romans theory, Phys. Lett. B 682 (2009) 225 [arXiv:0909.1692] [SPIRES].

    ADS  Google Scholar 

  19. J. Jeong, H.-C. Kim, S. Lee, E. O Colgain and H. Yavartanoo, Schrödinger invariant solutions of M-theory with Enhanced Supersymmetry, JHEP 03 (2010) 034 [arXiv:0911.5281] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. Y. Nakayama and S.-J. Rey, Observables and Correlators in Nonrelativistic ABJM Theory, JHEP 08 (2009) 029 [arXiv:0905.2940] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Singh, Galilean type IIA backgrounds and a map, arXiv:1007.0866 [SPIRES].

  24. R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. R.N. Caldeira Costa and M. Taylor, Holography for chiral scale-invariant models, JHEP 02 (2011) 082 [arXiv:1010.4800] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  26. W. Li, T. Nishioka and T. Takayanagi, Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories, JHEP 10 (2009) 015 [arXiv:0908.0363] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. T. Nishioka and H. Tanaka, Lifshitz-like Janus Solutions, JHEP 02 (2011) 023 [arXiv:1010.6075] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super-Yang-Mills theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. O. Aharony, J. Gomis and T. Mehen, On theories with light-like noncommutativity, JHEP 09 (2000) 023 [hep-th/0006236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.X. Lu, S. Roy and H. Singh, SL(2,Z) duality and 4-dimensional noncommutative theories, Nucl. Phys. B 595 (2001) 298 [hep-th/0007168] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. V.R. Kaigorodov, Einstein spaces of maximum mobility, Dokl. Akad. Nauk. SSSR 146 (1962) 793 [Sov. Phys. Doklady 7 (1963) 893].

    Google Scholar 

  34. M. Cvetič, H. Lü and C.N. Pope, Spacetimes of boosted p-branes and CFT in infinite-momentum frame, Nucl. Phys. B 545 (1999) 309 [hep-th/9810123] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvendra Singh.

Additional information

ArXiv ePrint: 1011.6221

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H. Holographic flows to IR Lifshitz spacetimes. J. High Energ. Phys. 2011, 118 (2011). https://doi.org/10.1007/JHEP04(2011)118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)118

Keywords

Navigation