Skip to main content
Log in

Exotic dark spinor fields

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Exotic dark spinor fields are introduced and investigated in the context of inequivalent spin structures on arbitrary curved spacetimes, which induces an additional term on the associated Dirac operator, related to a Čech cohomology class. For the most kinds of spinor fields, any exotic term in the Dirac operator can be absorbed and encoded as a shift of the electromagnetic vector potential representing an element of the cohomology group \( {H^1}\left( {M,{\mathbb{Z}_2}} \right) \). The possibility of concealing such an exotic term does not exist in case of dark (ELKO) spinor fields, as they cannot carry electromagnetic charge, so that the full topological analysis must be evaluated. Since exotic dark spinor fields also satisfy Klein-Gordon propagators, the dynamical constraints related to the exotic term in the Dirac equation can be explicitly calculated. It forthwith implies that the non-trivial topology associated to the spacetime can drastically engender — from the dynamics of dark spinor fields — constraints in the spacetime metric structure. Meanwhile, such constraints may be alleviated, at the cost of constraining the exotic spacetime topology. Besides being prime candidates to the dark matter problem, dark spinor fields are shown to be potential candidates to probe non-trivial topologies in spacetime, as well as probe the spacetime metric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.V. Ahluwalia and D. Grumiller, Spin half fermions with mass dimension one: theory, phenomenology and dark matter, JCAP 07 (2005) 012 [hep-th/0412080] [SPIRES].

    ADS  Google Scholar 

  2. D.V. Ahluwalia and D. Grumiller, Dark matter: a spin one half fermion field with mass dimension one?, Phys. Rev. D 72 (2005) 067701 [hep-th/0410192] [SPIRES].

    ADS  Google Scholar 

  3. D.V. Ahluwalia, Theory of neutral particles: McLennan-Case construct for neutrino, its generalization and a fundamentally new wave equation, Int. J. Mod. Phys. A 11 (1996) 1855 [hep-th/9409134] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  4. D.V. Ahluwalia, Extended set of Majorana spinors, a new dispersion relation and a preferred frame, hep-ph/0305336 [SPIRES].

  5. A.E. Bernardini and R. da Rocha, Lorentz-violating dilatations in the momentum space and some extensions on non-linear actions of Lorentz algebra-preserving systems, Phys. Rev. D 75 (2007) 065014 [hep-th/0701094] [SPIRES].

    ADS  Google Scholar 

  6. A.E. Bernardini and R. da Rocha, Obtaining the equation of motion for a fermionic particle in a generalized Lorentz-violating system framework, Europhys. Lett. 81 (2008) 40010 [hep-th/0701092] [SPIRES].

    Article  ADS  Google Scholar 

  7. D.V. Ahluwalia, Dark matter and its darkness, Int. J. Mod. Phys. D 15 (2006) 2267 [astro-ph/0603545] [SPIRES].

    ADS  Google Scholar 

  8. M. Dias, F. de Campos and J.M. Hoff da Silva, Exploring light Elkos signal at accelerators, arXiv:1012.4642 [SPIRES].

  9. D.V. Ahluwalia and S.P. Horvath, Very special relativity as relativity of dark matter: the Elko connection, JHEP 11 (2010) 078 [arXiv:1008.0436] [SPIRES].

    Article  ADS  Google Scholar 

  10. J.M. Hoff da Silva and R. da Rocha, From Dirac action to ELKO action, Int. J. Mod. Phys. A 24 (2009) 3227 [arXiv:0903.2815] [SPIRES].

    ADS  Google Scholar 

  11. R. da Rocha and J.M. Hoff da Silva, From Dirac spinor fields to ELKO, J. Math. Phys. 48 (2007) 123517 [arXiv:0711.1103] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. C.G. Boehmer, J. Burnett, D.F. Mota and D.J. Shaw, Dark spinor models in gravitation and cosmology, JHEP 07 (2010) 053 [arXiv:1003.3858] [SPIRES].

    Article  ADS  Google Scholar 

  13. C.G. Boehmer, G. Caldera-Cabral, R. Lazkoz and R. Maartens, Dynamics of dark energy with a coupling to dark matter, Phys. Rev. D 78 (2008) 023505 [arXiv:0801.1565] [SPIRES].

    ADS  Google Scholar 

  14. L. Fabbri, Conformal gravity with the most general ELKO Fields, arXiv:1101.2566 [SPIRES].

  15. D. Gredat and S. Shankaranarayanan, Consistency relation between the scalar and tensor spectra in spinflation, JCAP 01 (2010) 008 [arXiv:0807.3336] [SPIRES].

    ADS  Google Scholar 

  16. S. Shankaranarayanan, What-if inflaton is a spinor condensate?, Int. J. Mod. Phys. D 18 (2009) 2173 [arXiv:0905.2573] [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. S. Shankaranarayanan, Dark spinor driven inflation, arXiv:1002.1128 [SPIRES].

  18. H. Wei, Spinor dark energy and cosmological coincidence problem, Phys. Lett. B 695 (2011) 307 [arXiv:1002.4230] [SPIRES].

    ADS  Google Scholar 

  19. C.G. Boehmer, The Einstein-Elko system — can dark matter drive inflation?, Annalen Phys. 16 (2007) 325 [gr-qc/0701087] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  20. C.G. Boehmer, The Einstein-Cartan-Elko system, Annalen Phys. 16 (2007) 38 [gr-qc/0607088] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  21. C.G. Boehmer, Dark spinor inflation — theory primer and dynamics, Phys. Rev. D 77 (2008) 123535 [arXiv:0804.0616] [SPIRES].

    ADS  Google Scholar 

  22. C.G. Boehmer and J. Burnett, Dark energy with dark spinors, Mod. Phys. Lett. A 25 (2010) 101 [arXiv:0906.1351] [SPIRES].

    ADS  Google Scholar 

  23. C.G. Boehmer and J. Burnett, Dark spinors with torsion in cosmology, Phys. Rev. D 78 (2008) 104001 [arXiv:0809.0469] [SPIRES].

    ADS  Google Scholar 

  24. D.V. Ahluwalia, C.-Y. Lee, D. Schritt and T.F. Watson, Dark matter and dark gauge fields, arXiv:0712.4190 [SPIRES].

  25. D.V. Ahluwalia, C.-Y. Lee, D. Schritt and T.F. Watson, Elko as self-interacting fermionic dark matter with axis of locality, Phys. Lett. B 687 (2010) 248 [arXiv:0804.1854] [SPIRES].

    ADS  Google Scholar 

  26. D.V. Ahluwalia, C.-Y. Lee and D. Schritt, Self-interacting Elko dark matter with an axis of locality, Phys. Rev. D 83 (2011) 065017 [arXiv:0911.2947] [SPIRES].

    ADS  Google Scholar 

  27. D.V. Ahluwalia, Towards a relativity of dark-matter rods and clocks, Int. J. Mod. Phys. D 18 (2009) 2311 [arXiv:0904.0066] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  28. L. Fabbri and S. Vignolo, The most general ELKOs in torsional f(R)-theories, arXiv:1012.4282 [SPIRES].

  29. K.E. Wunderle and R. Dick, A supersymmetric Lagrangian for Fermionic fields with mass dimension one, arXiv:1010.0963 [SPIRES].

  30. S.J. Avis and C.J. Isham, Lorentz gauge invariant vacuum functionals for quantized spinor fields in nonsimply connected space-times, Nucl. Phys. B 156 (1979) 441 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  31. J.W. Milnor, Spin structures on manifolds, L’ Enseignement Math. 9 (1963) 198.

    MATH  MathSciNet  Google Scholar 

  32. M.F. Atiyah, R. Bott and V.K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973) 279.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S.W. Hawking and C.N. Pope, Generalized spin structures in quantum gravity, Phys. Lett. B 73 (1978) 42 [SPIRES]

    ADS  MathSciNet  Google Scholar 

  34. N. Seiberg and E. Witten, Spin structures in string theory, Nucl. Phys. B 276 (1986) 272 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Back, P.G.O. Freund and M. Forger, New gravitational instantons and universal spin structures, Phys. Lett. B 77 (1978) 181 [SPIRES].

    ADS  Google Scholar 

  36. H.R. Petry, Exotic spinors in superconductivity, J. Math. Phys. 20 (1979) 231.

    Article  ADS  MathSciNet  Google Scholar 

  37. S.J. Avis and C.J. Isham, Generalized spin structures on four-dimensional space-times, Commun. Math. Phys. 72 (1980) 103 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. R.P. Geroch, Spinor structure of space-times in general relativity. I, J. Math. Phys. 9 (1968) 1739 [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. R.P. Geroch, Spinor structure of space-times in general relativity. II, J. Math. Phys. 11 (1970) 343 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  40. C.J. Isham, Twisted quantum fields in a curved space-time, Proc. R. Soc. London, Ser. A 362 (1978) 383.

    Article  ADS  MathSciNet  Google Scholar 

  41. C.J. Isham, Spinor fields in four-dimensional space-time, Proc. R. Soc. London, Ser. A 364 (1978) 591.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. S.W. Hawking, Space-time foam, Nucl. Phys. B 144 (1978) 349 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. S.M. Christensen and M.J. Duff, Flat space as a gravitational instanton, Nucl. Phys. B 146 (1978) 11 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Lüscher, SO(4) symmetric solutions of Minkowskian Yang-Mills field equations, Phys. Lett. B 70 (1977) 321 [SPIRES].

    ADS  Google Scholar 

  45. R. Sasaki, Exact classical solutions of the massless σ-model with gauge fields in Minkowski space, Phys. Lett. B 80 (1978) 61 [SPIRES].

    ADS  Google Scholar 

  46. B.M. Schechter, Yang-Mills theory on the hypertorus, Phys. Rev. D 16 (1977) 3015 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  47. S.D. Unwin, Thermodynamics in multiply connected spaces, J. Phys. A 12 (1979) L309.

    ADS  Google Scholar 

  48. S.D. Unwin, Quantised spin-1 field in flat Clifford-Klein space-times, J. Phys. A 13 (1980) 313.

    ADS  MathSciNet  Google Scholar 

  49. B.S. DeWitt, Quantum field theory in curved space-time, Phys. Rept. 19 (1975) 295 [SPIRES].

    Article  ADS  Google Scholar 

  50. J.S. Dowker and R. Banach, Quantum field theory on Clifford-Klein space-times. The effective Lagrangian and vacuum stress energy tensor, J. Phys. A 11 (1978) 2255 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  51. R. Banach and J.S. Dowker, The vacuum stress tensor for automorphic fields on some flat space-times, J. Phys. A 12 (1979) 2545 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  52. R. Banach and J.S. Dowker, Automorphic field theory: some mathematical issues, J. Phys. A 12 (1979) 2527 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  53. J.S. Dowker and R. Critchley, Vacuum stress tensor in an Einstein universe. Finite temperature effects, Phys. Rev. D 15 (1977) 1484 [SPIRES].

    ADS  Google Scholar 

  54. J.S. Dowker and R.Critchley, Covariant Casimir calculations, J. Phys. A 9 (1976) 535.

    ADS  MathSciNet  Google Scholar 

  55. R. Banach, Effective potentials for twisted fields, J. Phys. A 14 (1981) 901 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  56. R. Banach, The quantum theory of free automorphic fields, J. Phys. A 13 (1980) 2179 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  57. L.H. Ford, Twisted scalar and spinor strings in Minkowski space-time, Phys. Rev. D 21 (1980) 949 [SPIRES].

    ADS  Google Scholar 

  58. L.H. Ford, Vacuum polarization in a nonsimply connected space-time, Phys. Rev. D 21 (1980) 933 [SPIRES].

    ADS  Google Scholar 

  59. R.A. Mosna and W.A. Rodrigues, Jr, The bundles of algebraic and Dirac-Hestenes spinor fields, J. Math. Phys. 45 (2004) 2945 [math-ph/0212033] [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. W.A. Rodrigues, Jr, Algebraic and Dirac-Hestenes spinors and spinor fields, J. Math. Phys. 45 (2004) 2908 [math-ph/0212030] [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. G.L. Naber, Topology, geometry and gauge fields. Interactions, Appl. Math. Sci. 141, Springer-Verlag, New York U.S.A. (2000).

    MATH  Google Scholar 

  62. M. Nakahara, Geometry, topology and physics, Institute of Physics Publ., Bristol U. K. (1990).

    Book  MATH  Google Scholar 

  63. H.B. Lawson, Jr. and M.L. Michelson, Spin geometry, Princeton University Press, Princeton U.S.A. (1989).

    MATH  Google Scholar 

  64. R.A. Mosna, D. Miralles, J. Vaz, Jr., Multivector Dirac equations and \( {\mathbb{Z}_2} \) -gradings of Clifford algebras, Int. J. Theor. Phys. 41 (2002) 1651.

    Article  MATH  MathSciNet  Google Scholar 

  65. R.A. Mosna, D. Miralles, J. Vaz, Jr., \( {\mathbb{Z}_2} \) -gradings of Clifford algebras and multivector structures, J. Phys. A 36 (2003) 4395 [math.PH/0212020]

    ADS  MathSciNet  Google Scholar 

  66. E. Notte-Cuello, R. da Rocha and W.A. Rodrigues, The effective Lorentzian and teleparallel spacetimes generated by a free electromagnetic field, Rept. Math. Phys. 62 (2008) 69 [gr-qc/0612098] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  67. V.V. Fernandez, W.A. Rodrigues, Jr., A.M. Moya, and R. da Rocha, Clifford and extensor calculus and the Riemann and Ricci extensor fields in of deformed structures, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 1159 [math.0502003/].

    Article  MATH  Google Scholar 

  68. E.A. Notte-Cuello, R. da Rocha and W.A. Rodrigues, Jr., Some thoughts on geometries and on the nature of the gravitational field, J. Phys. Math. 2 (2010) P100506 [arXiv:0907.2424] [SPIRES].

    Article  Google Scholar 

  69. R. da Rocha and W.A. Rodrigues, Jr., The Dirac-Hestenes equation for spherical symmetric potentials in the spherical and Cartesian gauges, Int. J. Mod. Phys. A 21 (2006) 4071 [math.PH/0601018]

    ADS  Google Scholar 

  70. P. Lounesto, Clifford algebras, relativity and quantum mechanics, in Gravitation: the spacetime structure, Proc. of the 8th Latin American Symposium on Relativity and Gravitation, P. Letelier and W.A. Rodrigues, Jr. eds., Águas de Lindóia Brazil, 25-30 July 1993, World-Scientific, London U. K. (1993).

  71. P. Lounesto, Clifford algebras and spinors, 2nd ed., Cambridge University Press, Cambridge U. K. (2002) pg. 152–173.

    Google Scholar 

  72. T. Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics 25, American Mathematical Society, Providence U.S.A. (2000).

    MATH  Google Scholar 

  73. A. Chockalingham and C.J. Isham, Twisted supermultiplets, J. Phys. A 13 (1980) 2723 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  74. R. da Rocha and W.A. Rodrigues, Jr., Where are ELKO spinor fields in Lounesto spinor field classification?, Mod. Phys. Lett. A 21 (2006) 65 [math-ph/0506075] [SPIRES].

    ADS  Google Scholar 

  75. R. da Rocha and J.M. Hoff da Silva, ELKO spinor fields: Lagrangians for gravity derived from supergravity, Int. J. Geom. Meth. Mod. Phys. 6 (2009) 461 [arXiv:0901.0883] [SPIRES].

    Article  MATH  Google Scholar 

  76. R. da Rocha and J.G. Pereira, The quadratic spinor Lagrangian, axial torsion current and generalizations, Int. J. Mod. Phys. D 16 (2007) 1653 [gr-qc/0703076] [SPIRES].

    ADS  Google Scholar 

  77. P.R. Holland, Relativistic algebraic spinors and quantum motions in phase space, Found. Phys. 16 (1986) 708.

    Article  ADS  MathSciNet  Google Scholar 

  78. P.R. Holland, Minimal ideals and Clifford algebras in the phase space representation of spin-1/2 fields, in the Proceedings of the Workshop on Clifford Algebras and their Applications in Mathematical Physics, Canterbury 1985, J.S.R. Chisholm and A.K. Common eds., Reidel Dordrecht Holland (1986) pg. 273–283.

    Google Scholar 

  79. J.P. Crawford, On the algebra of Dirac bispinor densities: factorization and inversion theorems, J. Math. Phys. 26 (1985) 1429.

    Article  ADS  MathSciNet  Google Scholar 

  80. D.V. Ahluwalia and M. Sawicki, Front form spinors in the Weinberg-Soper formalism and generalized Melosh transformations for any spin, Phys. Rev. D 47 (1993) 5161 [nucl-th/9603019] [SPIRES].

    ADS  Google Scholar 

  81. L. Fabbri, Causality for ELKOs, Mod. Phys. Lett. A 25 (2010) 2483 [arXiv:0911.5304] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  82. L. Fabbri, Causal propagation for ELKO fields, Mod. Phys. Lett. A 25 (2010) 151 [arXiv:0911.2622] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  83. R. da Rocha and J.M. Hoff da Silva, ELKO, flagpole and flag-dipole spinor fields and the instanton Hopf fibration, Adv. Appl. Clifford Algebras 20 (2010) 847 [arXiv:0811.2717] [SPIRES].

    Article  MATH  Google Scholar 

  84. L. Fabbri, Zero energy of plane-waves for ELKOs, arXiv:1008.0334 [SPIRES].

  85. T. Asselmeyer and G. Hess, Fractional quantum hall effect, composite fermions and exotic spinors, cond-mat/9508053 [SPIRES].

  86. R. Grimm, Geometry of supergravity-matter coupling, Nucl. Phys. B 18 (1990) 113.

    MathSciNet  Google Scholar 

  87. G. Hess, Exotic Majorana spinors in (3 + 1)-dimensional space-times, J. Math. Phys. 35 (1994) 4848 [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  88. A. Lichnerowicz, Spineurs harmonique, C. R. Acad. Sci. Paris Sér. A 257 (1963) 7.

    MATH  MathSciNet  Google Scholar 

  89. E.A. Notte-Cuello, W.A. Rodrigues, Jr. and Q.A.G. de Souza, The square of the Dirac and spin-Dirac operators on a Riemann-Cartan space(time), Rept. Math. Phys. 60 (2007) 135 [math-ph/0703052] [SPIRES].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  90. W.A. Rodrigues, Jr. and E. Capelas de Oliveira, The many faces of Maxwell, Dirac and Einstein equations. A Clifford bundle approach, Lecture Notes in Physics 722, Springer, New York U.S.A. (2007).

    MATH  Google Scholar 

  91. L. Fabbri, The most general theory for ELKOs, arXiv:1011.1637 [SPIRES].

  92. G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev. 186 (1969) 1337 [SPIRES].

    Article  ADS  Google Scholar 

  93. G. Velo and D. Zwanziger, Noncausality and other defects of interaction lagrangians for particles with spin one and higher, Phys. Rev. 188 (1969) 2218 [SPIRES].

    Article  ADS  Google Scholar 

  94. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. London A 173 (1939) 211.

    ADS  MathSciNet  Google Scholar 

  95. W.A. Rodrigues, Jr., R. da Rocha and J. Vaz, Jr., Hidden consequence of active local Lorentz invariance, Int. J. Geom. Meth. Mod. Phys. 2 (2005) 305 [math-ph/0501064] [SPIRES].

    Article  MATH  Google Scholar 

  96. Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick, Analysis, manifolds and physics (revised edition), North-Holland, Amsterdam Netherlands (1977).

    Google Scholar 

  97. S. Kobayashi and K. Nomizu, Foundations of differential geometry 1, Interscience Publishers, New York U.S.A. (1963).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roldão da Rocha.

Additional information

ArXiv ePrint: 1103.4759

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Rocha, R., Bernardini, A.E. & da Silva, J.M.H. Exotic dark spinor fields. J. High Energ. Phys. 2011, 110 (2011). https://doi.org/10.1007/JHEP04(2011)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)110

Keywords

Navigation