Skip to main content
Log in

A new approach to anti-neutrino running in long-baseline neutrino oscillation experiments

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the possibility to replace the anti-neutrino run of a long baseline neutrino oscillation experiment, with anti-neutrinos from muon decay at rest. The low energy of these neutrinos allows the use of inverse beta decay for detection in a Gadolinium-doped water Cerenkov detector. We show that this approach yields a factor of five times larger anti-neutrino event sample. The resulting discovery reaches in θ 13, the mass hierarchy and leptonic CP violation are compared with those from a conventional superbeam experiment with combined neutrino and anti-neutrino running. We find that this approach yields a greatly improved reach for CP violation and θ 13 while leaving the ability to measure the mass hierarchy intact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [SPIRES].

    Google Scholar 

  2. J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Evidence for the 2π decay of the k 02 meson, Phys. Rev. Lett. 13 (1964) 138 [SPIRES].

    Article  ADS  Google Scholar 

  3. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].

  4. A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 [hep-ph/9901362] [SPIRES].

    Article  ADS  Google Scholar 

  5. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  6. M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].

    Article  ADS  Google Scholar 

  7. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  8. F. Reines and C.L. Cowan, The neutrino, Nature 178 (1956) 446 [SPIRES].

    Article  ADS  Google Scholar 

  9. C.L. Cowan, F. Reines, F.B. Harrison, H.W. Kruse and A.D. McGuire, Detection of the free neutrino: a confirmation, Science 124 (1956) 103 [SPIRES].

    Article  ADS  Google Scholar 

  10. LSND collaboration, C. Athanassopoulos et al., Evidence for \( {\bar{v}_\mu } \to {\bar{v}_e} \) oscillation from the LSND experiment at the Los Alamos meson physics facility, Phys. Rev. Lett. 77 (1996) 3082 [nucl-ex/9605003] [SPIRES].

    Article  ADS  Google Scholar 

  11. J.M. Conrad and M.H. Shaevitz, Multiple cyclotron method to search for CP-violation in the neutrino sector, Phys. Rev. Lett. 104 (2010) 141802 [arXiv:0912.4079] [SPIRES].

    Article  ADS  Google Scholar 

  12. V. Barger et al., Precision physics with a wide band super neutrino beam, Phys. Rev. D 74 (2006) 073004 [hep-ph/0607177] [SPIRES].

    ADS  Google Scholar 

  13. M.V. Diwan et al., Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP-violating effects, Phys. Rev. D 68 (2003) 012002 [hep-ph/0303081] [SPIRES].

    ADS  Google Scholar 

  14. J.F. Beacom and M.R. Vagins, GADZOOKS! Antineutrino spectroscopy with large water Cherenkov detectors, Phys. Rev. Lett. 93 (2004) 171101 [hep-ph/0309300] [SPIRES].

    Article  ADS  Google Scholar 

  15. Super-Kamiokande collaboration, H. Watanabe et al., First study of neutron tagging with a water Cherenkov detector, arXiv:0811.0735 [SPIRES].

  16. S. Dazeley, A. Bernstein, N.S. Bowden and R. Svoboda, Observation of neutrons with a Gadolinium doped water Cerenkov detector, Nucl. Instrum. Meth. A 607 (2009) 616 [arXiv:0808.0219] [SPIRES].

    ADS  Google Scholar 

  17. Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [SPIRES].

    ADS  Google Scholar 

  18. P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [SPIRES].

    Article  ADS  Google Scholar 

  19. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [SPIRES].

    Article  ADS  Google Scholar 

  20. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES, Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Link.

Additional information

ArXiv ePrint: 1005.4055

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwalla, S.K., Huber, P., Link, J.M. et al. A new approach to anti-neutrino running in long-baseline neutrino oscillation experiments. J. High Energ. Phys. 2011, 99 (2011). https://doi.org/10.1007/JHEP04(2011)099

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)099

Keywords

Navigation